首页> 外文期刊>IEEE Transactions on Electron Devices >Potentials of Machine Learning in Vacuum Electronic Devices Demonstrated by the Design of a Magnetron Injection Gun
【24h】

Potentials of Machine Learning in Vacuum Electronic Devices Demonstrated by the Design of a Magnetron Injection Gun

机译:真空电子设备中的机器学习的潜力通过磁控管注入枪设计

获取原文
获取原文并翻译 | 示例

摘要

Great progress has been made on machine learning and its applications are expanding rapidly nowadays. Through the case study of optimizing a magnetron injection gun for gyrotron devices, the functions of machine learning were investigated by using two supervised learning algorithms, regression trees and artificial neural networks. They showed excellent performance in predicting the outputs, exploring the importance of the input parameters and the relationship with the output parameters. Machine learning can be a useful tool in the development of microwave vacuum electron devices.
机译:对机器学习进行了巨大进展,而其应用正在迅速扩展。 通过优化磁控管注射枪的磁控管装置的案例研究,通过使用两个监督学习算法,回归树和人工神经网络来研究机器学习的功能。 它们在预测输出方面表现出出色的性能,探索输入参数的重要性以及与输出参数的关系。 机器学习可以是微波真空电子设备开发的有用工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号