首页> 外文期刊>Electron Devices, IEEE Transactions on >Abnormal Hump Effect Induced by Hydrogen Diffusion During Self-Heating Stress in Top-Gate Amorphous InGaZnO TFTs
【24h】

Abnormal Hump Effect Induced by Hydrogen Diffusion During Self-Heating Stress in Top-Gate Amorphous InGaZnO TFTs

机译:在顶部门无定形Ingazno TFT中自加热应力期间氢气扩散诱导的异常驼峰效应

获取原文
获取原文并翻译 | 示例

摘要

The mechanism of hydrogen-diffusion-induced electrical degradation under the self-heating effect for a top-gate amorphous InGaZnO (a-IGZO) thin-film transistor is examined in this article. Joule heating occurs in channels under high operating currents. The hydrogen in the $ext{n}^{+}$ a-IGZO source/drain then diffuses into the channel and shifts the threshold voltage ( ${V}_{{ext {TH}}}$ ) in the negative direction. As the thermal conductivity of a-IGZO is lower than that of the surrounding insulator, the heat is preferentially dissipated from the sides of the channel. However, the heat in the center of the channel cannot by dissipated quickly. In addition, the unequal channel thermal effect induces a hump effect in the electrical characteristics, which is observed in COMSOL simulations. Hydrogen diffusion under self-heating stress (SHS) operation increases both the effective channel length and parasitic capacitance. The capacitance measurement method is used to clarify the mechanisms of these abnormal phenomena. Finally, the Joule heating effect is eliminated in a low-temperature environment at 200 K with a constant current, confirming that the degradation is indeed caused by the Joule heating effect.
机译:在本文中,研究了在本文中对顶部栅极非晶Imazno(A-IGZO)薄膜晶体管的自加热效果下的氢气扩散诱导的电解的机理。在高效电流下发生焦耳加热。氢气中的氢<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ text {n} ^ {+} $ 然后,A-IGZO源/漏极扩散到通道中并使阈值电压移位(<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {v} _ {{ text {th}}} $ )在负面方向。随着A-IGZO的导热率低于周围绝缘体的导热率,热量优先从通道的侧面散发。然而,通道中心的热量不能快速消散。此外,不等通道热效果在COMSOL模拟中观察到的电气特性中的驼峰效应。自加热应力(SHS)操作下的氢气扩散增加了有效通道长度和寄生电容。电容测量方法用于阐明这些异常现象的机制。最后,在200 k的低温环境中消除了焦耳加热效果,恒定电流,确认降解确实是由焦耳加热效果引起的。

著录项

  • 来源
    《Electron Devices, IEEE Transactions on》 |2020年第7期|2807-2811|共5页
  • 作者单位

    Department of Photonics National Cheng Kung University Tainan Taiwan;

    Department of Physics National Sun Yat-sen University Kaohsiung Taiwan;

    Department of Electrical Engineering National Tsing-Hua University Hsinchu Taiwan;

    Department of Physics National Sun Yat-sen University Kaohsiung Taiwan;

    Department of Materials and Optoelectronic Science National Sun Yat-sen University Kaohsiung Taiwan;

    Department of Materials and Optoelectronic Science National Sun Yat-sen University Kaohsiung Taiwan;

    Department of Physics National Sun Yat-sen University Kaohsiung Taiwan;

    Department of Physics National Sun Yat-sen University Kaohsiung Taiwan;

    Department of Electrical Engineering National Tsing-Hua University Hsinchu Taiwan;

    Department of Materials and Optoelectronic Science National Sun Yat-sen University Kaohsiung Taiwan;

    Department of Physics R.O.C. Military Academy Kaohsiung Taiwan;

    Department of Photonics National Cheng Kung University Tainan Taiwan;

    Department of Physics National Sun Yat-sen University Kaohsiung Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrogen; Heating systems; Parasitic capacitance; Logic gates; Stress; Degradation; Capacitance measurement;

    机译:氢气;加热系统;寄生电容;逻辑门;应力;降解;电容测量;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号