首页> 外文期刊>IEEE Transactions on Electron Devices >Performance Impacts of Analog ReRAM Non-ideality on Neuromorphic Computing
【24h】

Performance Impacts of Analog ReRAM Non-ideality on Neuromorphic Computing

机译:模拟ReRAM非理想性对神经形态计算的性能影响

获取原文
获取原文并翻译 | 示例

摘要

Resistive random access memory (ReRAM) is often considered as a strong candidate for storing the weights in non-von Neumann neuromorphic computing systems. This paper studies how nonideal memory characteristics, which include programing error, read fluctuation, and retention, affect the inference accuracy of the analog ReRAM neural networks by incorporating memory characteristics extracted from 1-Mb ReRAM into a simulated inference-only neural network. This paper also shows that the different layer in the network can tolerate different amount of such imperfects. We learned four key points: 1) the conductance range of memory with less relative fluctuation is preferred for designing the weight-conductance mapping; 2) the control of programing error is essential for high inference accuracy; 3) retention-induced conductance drift can be fatal to the neuromorphic system. A compensation scheme is proposed in this paper which can effectively recover the inference accuracy; and 4) for multilayer networks, avoiding weight errors in the front layers can help to maintain the inference accuracy by reducing calculation error which may otherwise accumulate and pass down the networks. The concepts and approaches of this paper can also be applied to evaluate other types of nonvolatile memories for artificial neural networks.
机译:电阻式随机存取存储器(ReRAM)通常被认为是在非冯·诺依曼神经形态计算系统中存储权重的理想选择。本文通过将从1-Mb ReRAM中提取的存储特征合并到模拟的仅推理神经网络中,研究包括编程错误,读取波动和保留在内的非理想存储特征如何影响模拟ReRAM神经网络的推理精度。本文还表明,网络中的不同层可以容忍不同数量的此类缺陷。我们学到了四个要点:1)相对波动较小的存储器电导范围在设计权重-电导映射时是首选; 2)编程错误的控制对于高推理精度至关重要。 3)保留引起的电导漂移可能对神经形态系统致命。提出了一种可以有效恢复推理精度的补偿方案。和4)对于多层网络,避免前层的权重误差可以通过减少计算误差来帮助保持推理准确性,否则可能会积累和向下传递网络。本文的概念和方法也可以用于评估其他类型的用于人工神经网络的非易失性存储器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号