首页> 外文期刊>Electron Device Letters, IEEE >Mechanisms Limiting EOT Scaling and Gate Leakage Currents of High- $k$/Metal Gate Stacks Directly on SiGe
【24h】

Mechanisms Limiting EOT Scaling and Gate Leakage Currents of High- $k$/Metal Gate Stacks Directly on SiGe

机译:直接在SiGe上限制高$ k $ /金属栅极堆叠的EOT缩放和栅极漏电流的机制

获取原文
获取原文并翻译 | 示例

摘要

This letter addresses mechanisms responsible for a high gate leakage current $(J_{g})$ and a thick interfacial layer in the surface channel SiGe pFET enabling transistor fabrication with sub-1-nm equivalent-oxide-thickness (EOT) high-$k$ /metal gate stack. The primary mechanism limiting EOT scaling is Ge-enhanced Si oxidation resulting in a thick (1.4-nm) $hbox{SiO}_{x}$ interface layer. A secondary mechanism, i.e., Ge diffusion ($geq$3%) into high- $k$, results in high $J_{g}$ . In the framework of this understanding, we optimized a high-$k$ nitridation process to form as an efficient diffusion barrier, which reduces both O and Ge diffusion resulting in the total gate stack EOT $sim$0.9 nm with $J_{g}$ comparable to that of bulk Si substrate samples. The proposed plasma nitridation process enables fabrication of the sub-1-nm EOT gate-first gate stack with HfSiON dielectric directly on SiGe without Si cap.
机译:这封信阐述了导致高栅极漏电流$(J_ {g})$和表面沟道SiGe pFET中厚界面层的机制,这些晶体管能够制造具有低于1nm等效氧化物厚度(EOT)的高晶体管。 k $ /金属门叠层。限制EOT缩放的主要机制是Ge增强的Si氧化,导致厚(1.4 nm)的$ hbox {SiO} _ {x} $界面层。次要机制,即Ge扩散($ geq $ 3%)进入高$ k $,会导致高$ J_ {g} $。在这种理解的框架内,我们优化了高k $的氮化工艺以形成有效的扩散阻挡层,从而减少了O和Ge的扩散,从而形成了总栅极堆叠EOT $ sim $ 0.9 nm和$ J_ {g} $与块状硅衬底样品相当。所提出的等离子体氮化工艺能够在没有Si盖的情况下直接在SiGe上制造具有HfSiON介电层的亚1 nm EOT栅极第一栅堆叠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号