首页> 外文期刊>IEEE Electron Device Letters >Input Voltage Mapping Optimized for Resistive Memory-Based Deep Neural Network Hardware
【24h】

Input Voltage Mapping Optimized for Resistive Memory-Based Deep Neural Network Hardware

机译:针对基于电阻存储器的深度神经网络硬件进行了优化的输入电压映射

获取原文
获取原文并翻译 | 示例

摘要

Artificial neural network (ANN) computations based on graphics processing units (GPUs) consume high power. Resistive random-access memory (RRAM) has been gaining attention as a promising technology for implementing power-efficient ANNs, replacing GPU. However, nonlinear – characteristics of RRAM devices have been limiting its use for ANN implementation. In this letter, we propose a method and a circuit to address issues due to the nonlinear – characteristics. We demonstrate the feasibility of the method by simulating its application to multiple neural networks, from multi-layer perceptron to deep convolutional neural network based on a typical RRAM model. Results from classifying datasets including ImageNet show that the proposed method produces much higher accuracy than the naive linear mapping for a wide range of nonlinearity.
机译:基于图形处理单元(GPU)的人工神经网络(ANN)计算消耗大量功率。电阻式随机存取存储器(RRAM)作为一种有前途的技术来实现省电的人工神经网络(ANN)来代替GPU,已引起人们的关注。但是,RRAM器件的非线性特性一直限制了其在ANN实现中的使用。在这封信中,我们提出了一种解决非线性特性所致问题的方法和电路。通过仿真将其应用于基于多层RRAM模型的多层感知器到多层卷积神经网络的多种神经网络,我们证明了该方法的可行性。对包括ImageNet在内的数据集进行分类的结果表明,对于宽范围的非线性,所提出的方法比朴素的线性映射具有更高的准确性。

著录项

  • 来源
    《IEEE Electron Device Letters》 |2017年第9期|1228-1231|共4页
  • 作者单位

    Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, South Korea;

    Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, South Korea;

    Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, South Korea;

    Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang, South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Simulation; Integrated circuit modeling; Resistors; Neural networks; SPICE; Signal generators; Training;

    机译:仿真;集成电路建模;电阻器;神经网络;SPICE;信号发生器;培训;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号