首页> 外文期刊>Discrete Event Dynamic Systems >On-line Optimal Control of a Class of Discrete Event Systems with Real-Time Constraints
【24h】

On-line Optimal Control of a Class of Discrete Event Systems with Real-Time Constraints

机译:一类具有实时约束的离散事件系统的在线最优控制

获取原文
获取原文并翻译 | 示例

摘要

We consider Discrete Event Systems (DES) involving tasks with real-time constraints and seek to control processing times so as to minimize a cost function subject to each task meeting its own constraint. It has been shown that the off-line version of this problem can be efficiently solved by the Critical Task Decomposition Algorithm (CTDA) (Mao et al., IEEE Trans Mobile Comput 6(6):678–688, 2007). In the on-line version, random task characteristics (e.g., arrival times) are not known in advance. To bypass this difficulty, worst-case analysis may be used. This, however, does not make use of probability distributions and results in an overly conservative solution. In this paper, we develop a new approach which does not rely on worst-case analysis but provides a “best solution in probability” efficiently obtained by estimating the probability distribution of sample-path-optimal solutions. We introduce a condition termed “non-singularity” under which the best solution in probability leads to the on-line optimal control. Numerical examples are included to illustrate our results and show substantial performance improvements over worst-case analysis.
机译:我们考虑涉及具有实时约束的任务的离散事件系统(DES),并寻求控制处理时间,以最大程度地降低每个任务满足其约束的成本函数。已经显示,可以通过关键任务分解算法(CTDA)有效地解决此问题的脱机版本(Mao等人,IEEE Trans Mobile Comput 6(6):678-688,2007)。在在线版本中,事先未知随机任务特征(例如,到达时间)。为了绕过这个困难,可以使用最坏情况分析。然而,这没有利用概率分布,并且导致过于保守的解决方案。在本文中,我们开发了一种新方法,该方法不依赖于最坏情况分析,而是提供一种通过估计样本路径最优解的概率分布而有效获得的“概率最佳解”。我们引入了一个称为“非奇异性”的条件,在该条件下,概率的最佳解决方案导致了在线最优控制。包括了一些数值示例,以说明我们的结果,并显示出在最坏情况下的分析方面的实质性性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号