首页> 外文期刊>Discrete Event Dynamic Systems >Switched-mode systems: gradient-descent algorithms with Armijo step sizes
【24h】

Switched-mode systems: gradient-descent algorithms with Armijo step sizes

机译:开关模式系统:Armijo步长的梯度下降算法

获取原文
获取原文并翻译 | 示例

摘要

This paper concerns optimal mode-scheduling in autonomous switched-mode hybrid dynamical systems, where the objective is to minimize a cost-performance functional defined on the state trajectory as a function of the schedule of modes. The controlled variable, namely the modes’ schedule, consists of the sequence of modes and the switchover times between them. We propose a gradient-descent algorithm that adjusts a given mode-schedule by changing multiple modes over time-sets of positive Lebesgue measures, thereby avoiding the inefficiencies inherent in existing techniques that change the modes one at a time. The algorithm is based on steepest descent with Armijo step sizes along Gâteaux differentials of the performance functional with respect to schedule-variations, which yields effective descent at each iteration. Since the space of mode-schedules is infinite dimensional and incomplete, the algorithm’s convergence is proved in the sense of Polak’s framework of optimality functions and minimizing sequences. Simulation results are presented, and possible extensions to problems with dwell-time lower-bound constraints are discussed.
机译:本文涉及自主切换模式混合动力系统中的最佳模式调度,其目标是最大程度地减少根据模式调度在状态轨迹上定义的成本效益函数。受控变量(即模式的时间表)由模式序列和它们之间的切换时间组成。我们提出了一种梯度下降算法,该算法通过在正Lebesgue量度的时间范围内更改多个模式来调整给定的模式时间表,从而避免了一次更改一个模式的现有技术固有的低效率。该算法基于最陡峭的下降过程,其中Armijo步长沿性能函数的Gâteaux差异与进度变化有关,从而在每次迭代时均产生有效下降。由于模式计划的空间是无限的,而且是不完整的,因此在Polak的最优函数和最小化序列框架的意义上证明了算法的收敛性。给出了仿真结果,并讨论了驻留时间下界约束问题的可能扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号