首页> 外文期刊>Discrete and continuous dynamical systems >SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES
【24h】

SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES

机译:不规则域或带界面上的亥姆霍兹方程组的一些新的有限差分方法

获取原文
获取原文并翻译 | 示例

摘要

Solving a Helmholtz equation Am + Xu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of A is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multi-grid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient A is inversely proportional to the mesh size.
机译:有效地解决亥姆霍兹方程Am + Xu = f是许多应用的挑战。例如,不可压缩的Navier-Stokes方程的许多有效求解器的核心部分是求解一个或几个Helmholtz方程。本文提出了两种新的有限差分方法来求解不规则域或带界面的Helmholtz方程。对于不规则域上的亥姆霍兹方程,当A的大小较大时,使用现有的增强型浸入接口方法(AIIM)获得的数值解的精度可能会降低。在我们的新方法中,在应用AIIM之前,我们使用水平集函数将源项和PDE扩展到更大的域。对于带界面的亥姆霍兹方程,提出了一种新的最大原理保持有限差分法。新方法仍然使用标准的五点模板,并在不规则的网格点处修改了有限差分方案。所得的有限差分方程线性系统的系数矩阵满足离散最大原理的正负号性质,并且可以使用多网格求解器有效地求解。有限差分法还扩展为处理时间离散方程,其中解系数A与网格尺寸成反比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号