首页> 外文期刊>Discrete and continuous dynamical systems >NONLINEAR FREE FALL OF ONE-DIMENSIONAL RIGID BODIES IN HYPERVISCOUS FLUIDS
【24h】

NONLINEAR FREE FALL OF ONE-DIMENSIONAL RIGID BODIES IN HYPERVISCOUS FLUIDS

机译:高粘流体中一维刚体的非线性自由落体

获取原文
获取原文并翻译 | 示例

摘要

We consider the free fall of slender rigid bodies in a viscous incompressible fluid. We show that the dimensional reduction (DR), performed by substituting the slender bodies with one-dimensional rigid objects, together with a hyperviscous regularization (HR) of the Navier-Stokes equation for the three-dimensional fluid lead to a well-posed fluid-structure interaction problem. In contrast to what can be achieved within a classical framework, the hyperviscous term permits a sound definition of the viscous force acting on the one-dimensional immersed body. Those results show that the DR/HR procedure can be effectively employed for the mathematical modeling of the free fall problem in the slender-body limit.
机译:我们考虑了细长的刚体在粘性不可压缩流体中的自由下落。我们表明,通过用细长的物体替换为一维刚性物体进行的降维(DR),以及针对三维流体的Navier-Stokes方程的高粘正则化(HR)导致了流体状态良好结构相互作用问题。与经典框架内可以实现的相反,超粘术语允许对作用在一维浸入式物体上的粘性力进行合理定义。这些结果表明,DR / HR过程可以有效地用于细长体极限中的自由落体问题的数学建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号