首页> 外文期刊>Discrete and continuous dynamical systems >UNIQUENESS OF NONZERO POSITIVE SOLUTIONS OF LAPLACIAN ELLIPTIC EQUATIONS ARISING IN COMBUSTION THEORY
【24h】

UNIQUENESS OF NONZERO POSITIVE SOLUTIONS OF LAPLACIAN ELLIPTIC EQUATIONS ARISING IN COMBUSTION THEORY

机译:燃烧理论中拉普拉斯椭圆型方程正正解的唯一性

获取原文
获取原文并翻译 | 示例

摘要

Uniqueness of nonzero positive solutions of a Laplacian elliptic equation arising in combustion theory is of great interest in combustion theory since it can be applied to determine where the extinction phenomenon occurs. We study the uniqueness whenever the orders of the reaction rates are in (—∞,1]. Previous results on uniqueness treated the case when the orders belong to [0,1). When the orders are negative or 1, it is physically meaningful and the bimolecular reaction rate corresponds to the order 1, but there is little study on uniqueness. Our results on the uniqueness are completely new when the orders are negative or 1, and also improve some known results when the orders belong to (0,1). Our results provide exact intervals of the Frank-Kamenetskii parameters on which the extinction phenomenon never occurs. The novelty of our methodology is to combine and utilize the results from Laplacian elliptic inequalities and equations to derive new results on uniqueness of nonzero positive solutions for general Laplacian elliptic equations.
机译:燃烧理论中产生的拉普拉斯椭圆方程的非零正解的唯一性在燃烧理论中引起了极大的兴趣,因为它可以用于确定熄灭现象的发生位置。我们研究每当反应速率的阶数为(-∞,1)时的唯一性,先前关于唯一性的结果处理了阶数为[0,1)的情况。当阶数为负数或1时,这在物理上是有意义的,并且双分子反应速率对应于阶数1,但是对唯一性的研究很少。当阶数为负数或1时,我们关于唯一性的结果是全新的,并且当阶数为(0,1)时,我们还将改进某些已知结果。我们的结果提供了Frank-Kamenetskii参数的精确间隔,在该间隔上绝不会发生灭绝现象。我们方法的新颖之处在于,结合并利用拉普拉斯椭圆不等式和方程的结果,可以得出有关一般拉普拉斯椭圆方程非零正解唯一性的新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号