首页> 外文期刊>Discrete and continuous dynamical systems >BIFURCATION OF PERIODIC SOLUTIONS FROM A RING CONFIGURATION OF DISCRETE NONLINEAR OSCILLATORS
【24h】

BIFURCATION OF PERIODIC SOLUTIONS FROM A RING CONFIGURATION OF DISCRETE NONLINEAR OSCILLATORS

机译:离散非线性振荡器环配置的周期解的分叉

获取原文
获取原文并翻译 | 示例

摘要

This paper gives an analysis of the periodic solutions of a ring of n oscillators coupled to their neighbors. We prove the bifurcation of branches of such solutions from a relative equilibrium, and we study their symmetries. We give complete results for a cubic Schrodinger potential and for a saturable potential and for intervals of the amplitude of the equilibrium. The tools for the analysis are the orthogonal degree and representation of groups. The bifurcation of relative equilibria was given in a previous paper.
机译:本文对耦合到其邻居的n个振荡器环的周期解进行了分析。我们从相对均衡中证明了此类解决方案分支的分支,并研究了它们的对称性。对于立方薛定inger势和可饱和势以及平衡振幅的间隔,我们给出完整的结果。分析的工具是正交度和组的表示。相对平衡的分歧在先前的论文中给出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号