首页> 外文期刊>Discrete and continuous dynamical systems >TRAVELING WAVE SOLUTIONS FOR A ONE DIMENSIONAL MODEL OF CELL-TO-CELL ADHESION AND DIFFUSION WITH MONOSTABLE REACTION TERM
【24h】

TRAVELING WAVE SOLUTIONS FOR A ONE DIMENSIONAL MODEL OF CELL-TO-CELL ADHESION AND DIFFUSION WITH MONOSTABLE REACTION TERM

机译:一维单稳态反应条件下细胞与细胞黏附和扩散模型的行波解

获取原文
获取原文并翻译 | 示例

摘要

This work is concerned with the properties of the traveling wave solutions of a one dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion with net birth term ρ_t = [D(ρ)ρ_x]_x + g(p) t ≥ 0, x∈R, where D(ρ) may take positive or negative values with different population density ρ and adhesion coefficient α ∈ [0,1], and the negative one will lead to the ill-posedness of the equation. In all these cases we prove the existence of infinitely many traveling wave solutions, where these solutions are parameterized by their wave speed and monotonically connect the stationary states ρ = 0 and ρ=1.
机译:这项工作涉及一维细胞扩散和聚集的一维模型的行波解的性质,其中合并了体积填充和细胞间粘附,净出生期为ρ_t= [D(ρ)ρ_x] _x + g( p)t≥0,x∈R,其中D(ρ)可能取正值或负值,而人口密度ρ和附着系数α∈[0,1]不同,而负值将导致不正确的姿势方程。在所有这些情况下,我们证明了存在无限多个行波解,这些解通过其波速进行参数化,并单调地连接稳态ρ= 0和ρ= 1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号