首页> 外文期刊>Discrete and continuous dynamical systems >ALGEBRAIC LIMIT CYCLES FOR QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS
【24h】

ALGEBRAIC LIMIT CYCLES FOR QUADRATIC POLYNOMIAL DIFFERENTIAL SYSTEMS

机译:二次多项式微分系统的代数极限环

获取原文
获取原文并翻译 | 示例

摘要

We prove that for a quadratic polynomial differential system having three pairs of diametrally opposite equilibrium points at infinity that are positively rationally independent, has at most one algebraic limit cycle. Our result provides a partial positive answer to the following conjecture: Quadratic polynomial differential systems have at most one algebraic limit cycle.
机译:我们证明,对于具有三对在径向上正对独立的,径向对立的平衡点的二次多项式微分系统,最多具有一个代数极限环。我们的结果为以下猜想提供了部分肯定的答案:二次多项式微分系统最多具有一个代数极限环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号