首页> 外文期刊>Discrete and continuous dynamical systems >BOUNDS ON THE HAUSDORFF DIMENSION OF RANDOM ATTRACTORS FOR INFINITE-DIMENSIONAL RANDOM DYNAMICAL SYSTEMS ON FRACTALS
【24h】

BOUNDS ON THE HAUSDORFF DIMENSION OF RANDOM ATTRACTORS FOR INFINITE-DIMENSIONAL RANDOM DYNAMICAL SYSTEMS ON FRACTALS

机译:分形上无限维随机动力系统的随机吸引子的Hausorff维数界

获取原文
获取原文并翻译 | 示例

摘要

We consider a stochastic nonlinear evolution equation where the domain is given by a fractal set. The linear part of the equation is given by a Laplacian defined on the fractal. This equation generates a random dynamical system. The long time behavior is given by an attractor which has a finite Hausdorff dimension. We would like to reveal the connections between upper and lower estimates of this Hausdorff dimension and the geometry of the fractal. In particular, the parameter which determines these bounds is the spectral exponent of the fractal. Especially for the lower estimate we construct a local unstable random Lipschitz manifold.
机译:我们考虑一个随机的非线性演化方程,其中的域由分形集给出。该方程的线性部分由分形上定义的拉普拉斯算子给出。该方程生成一个随机动力学系统。长时间行为由具有有限Hausdorff尺寸的吸引子提供。我们想揭示此Hausdorff维数的上下估计与分形几何之间的联系。尤其是,确定这些界限的参数是分形的光谱指数。特别是对于较低的估计,我们构造了一个局部不稳定的随机Lipschitz流形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号