首页> 外文期刊>Discrete and continuous dynamical systems >TWO-GRID FINITE ELEMENT METHOD FOR THE STABILIZATION OF MIXED STOKES-DARCY MODEL
【24h】

TWO-GRID FINITE ELEMENT METHOD FOR THE STABILIZATION OF MIXED STOKES-DARCY MODEL

机译:混合斯托克斯-达西模型稳定的两网格有限元方法

获取原文
获取原文并翻译 | 示例

摘要

A two-grid discretization for the stabilized finite element method for mixed Stokes-Darcy problem is proposed and analyzed. The lowest equal-order velocity-pressure pairs are used due to their simplicity and attractive computational properties, such as much simpler data structures and less computer memory for meshes and algebraic system, easier interpolations, and convenient usages of many existing preconditioners and fast solvers in simulations, which make these pairs a much popular choice in engineering practice; see e.g., [4, 27]. The decoupling methods are adopted for solving coupled systems based on the significant features that decoupling methods can allow us to solve the submodel problems independently by using most appropriate numerical techniques and preconditioners, and also to reduce substantial coding tasks. The main idea in this paper is that, on the coarse grid, we solve a stabilized finite element scheme for coupled Stokes-Darcy problem; then on the fine grid, we apply the coarse grid approximation to the interface conditions, and solve two independent subproblems: one is the stabilized finite element method for Stokes subproblem, and another one is the Darcy subproblem. Optimal error estimates are derived, and several numerical experiments are carried out to demonstrate the accuracy and efficiency of the two-grid stabilized finite element algorithm.
机译:提出并分析了混合斯托克斯-达西问题的稳定有限元方法的两网格离散化。由于它们的简单性和吸引人的计算特性,因此使用了最低等阶速度-压力对,例如,数据结构更简单,网格和代数系统的计算机内存更少,插值更容易,并且许多现有的预处理器和快速求解器的使用方便。仿真,使这些对在工程实践中成为很受欢迎的选择;参见例如[4,27]。基于解耦方法的重要特征,解耦方法可用于求解耦合系统,该显着特征使解耦方法可以使我们能够通过使用最合适的数值技术和前置条件来独立解决子模型问题,并减少大量的编码任务。本文的主要思想是,在粗糙网格上,我们解决了Stokes-Darcy耦合问题的稳定有限元方案。然后在细网格上,将粗网格逼近应用于界面条件,并解决两个独立的子问题:一个是Stokes子问题的稳定有限元方法,另一个是Darcy子问题。推导了最佳误差估计,并进行了一些数值实验,以证明两网格稳定有限元算法的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号