首页> 外文期刊>Discrete and continuous dynamical systems >GLOBAL EXPONENTIAL ATTRACTION FOR MULTI-VALUED SEMIDYNAMICAL SYSTEMS WITH APPLICATION TO DELAY DIFFERENTIAL EQUATIONS WITHOUT UNIQUENESS
【24h】

GLOBAL EXPONENTIAL ATTRACTION FOR MULTI-VALUED SEMIDYNAMICAL SYSTEMS WITH APPLICATION TO DELAY DIFFERENTIAL EQUATIONS WITHOUT UNIQUENESS

机译:多值半动态系统的全局指数吸引作用及其在无唯一性时滞微分方程中的应用

获取原文
获取原文并翻译 | 示例

摘要

We first prove the existence of a compact positively invariant set which exponentially attracts any bounded set for abstract multi-valued semidynamical systems. Then, we apply the abstract theory to handle retarded ordinary differential equations and lattice dynamical systems, as well as reaction-diffusion equations with infinite delays. We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth and dissipative conditions, so that uniqueness of the Cauchy problem fails to be true.
机译:我们首先证明了一个紧凑的正不变集的存在,该集以指数形式吸引了抽象多值半动力学系统的任何有界集。然后,我们将抽象理论应用于处理滞后的常微分方程和晶格动力学系统,以及具有无限延迟的反应扩散方程。我们不假设非线性项上的任何Lipschitz条件,而仅假设连续性假设以及增长和耗散条件,因此柯西问题的唯一性无法成立。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号