首页> 外文期刊>Discrete & Computational Geometry >On the Number of Facets of Three-Dimensional Dirichlet Stereohedra III: Full Cubic Groups
【24h】

On the Number of Facets of Three-Dimensional Dirichlet Stereohedra III: Full Cubic Groups

机译:关于三维狄利克雷立体球III的面数:全立方群

获取原文
获取原文并翻译 | 示例

摘要

We are interested in the maximum possible number of facets that Dirichlet stereohedra for three-dimensional crystallographic groups can have. In two previous papers, D. Bochiş and the second author studied the problem for noncubic groups. This paper deals with “full” cubic groups, while “quarter” cubic groups are left for a subsequent paper. Here, “full” and “quarter” refers to the recent classification of three-dimensional crystallographic groups by Conway, Delgado-Friedrichs, Huson and Thurston. This paper’s main result is that Dirichlet stereohedra for any of the 27 full groups cannot have more than 25 facets. We also find stereohedra with 17 facets for one of these groups.
机译:我们对三维晶体学组的Dirichlet立体面体可以具有的最大面数感兴趣。在前两篇论文中,D。Bochiş和第二作者研究了非立方群的问题。本文处理“完整”立方组,而“四分之一”立方组留给后续论文。此处,“完整”和“四分之一”是指Conway,Delgado-Friedrichs,Huson和Thurston对三维晶体学组的最新分类。本文的主要结果是,对于全部27个小组中的任何一个,狄利克雷(Dirichlet)立体面体都不能超过25个方面。我们还为这些组之一找到了带有17个切面的立体面体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号