首页> 外文期刊>Discrete and Computational Geometry >Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties
【24h】

Lower Bounds in Real Algebraic Geometry and Orientability of Real Toric Varieties

机译:实际代数几何的下界和实际复曲面品种的可定向性

获取原文
获取原文并翻译 | 示例

摘要

The real solutions to a system of sparse polynomial equations may be realized as a fiber of a projection map from a toric variety. When the toric variety is orientable, the degree of this map is a lower bound for the number of real solutions to the system of equations. We strengthen previous work by characterizing when the toric variety is orientable. This is based on work of Nakayama and Nishimura, who characterized the orientability of smooth real toric varieties.
机译:稀疏多项式方程组系统的实际解可以实现为复曲面形式的投影图的光纤。当复曲面类型是可定向的时,此映射的程度是方程组的实际解的数量的下限。我们通过表征复曲面类型何时可定向来加强以前的工作。这是基于中山和西村的工作,他们描述了光滑的真正复曲面品种的定向性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号