首页> 外文期刊>Discrete and continuous dynamical systems >TRAVELING FRONTS AND ENTIRE SOLUTIONS IN PARTIALLY DEGENERATE REACTION-DIFFUSION SYSTEMS WITH MONOSTABLE NONLINEARITY
【24h】

TRAVELING FRONTS AND ENTIRE SOLUTIONS IN PARTIALLY DEGENERATE REACTION-DIFFUSION SYSTEMS WITH MONOSTABLE NONLINEARITY

机译:具有非稳态非线性的部分简并反应扩散系统的运动前沿和整体解

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with traveling fronts and entire solutions for a class of monostable partially degenerate reaction-diffusion systems. It is known that the system admits traveling wave solutions. In this paper, we first prove the monotonicity and uniqueness of the traveling wave solutions, and the existence of spatially independent solutions. Combining traveling fronts with different speeds and a spatially independent solution, the existence and various qualitative features of entire solutions are then established by using comparison principle. As applications, we consider a reaction-diffusion model with a quiescent stage in population dynamics and a man-environment-man epidemic model in physiology.
机译:本文涉及一类单稳态部分退化反应扩散系统的传播前沿和整体解。已知系统允许行波解。在本文中,我们首先证明了行波解的单调性和唯一性,以及空间独立解的存在。结合不同速度的行进线和空间独立的解,利用比较原理确定了整个解的存在性和质性。作为应用,我们考虑种群动态中处于静态的反应扩散模型和生理学中的人-环境-人流行模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号