首页> 外文期刊>Discrete and continuous dynamical systems >PULLBACK ATTRACTORS FOR THE NON-AUTONOMOUS 2D NAVIER-STOKES EQUATIONS FOR MINIMALLY REGULAR FORCING
【24h】

PULLBACK ATTRACTORS FOR THE NON-AUTONOMOUS 2D NAVIER-STOKES EQUATIONS FOR MINIMALLY REGULAR FORCING

机译:用于最小正则强制的非自治2D Navier-Stokes方程的回拉吸引子

获取原文
获取原文并翻译 | 示例

摘要

This paper treats the existence of pullback attractors for the non-autonomous 2D Navier-Stokes equations in two different spaces, namely L~2 and H~1. The non-autonomous forcing term is taken in L_(loc)~2(R;H~(-1)) and L_(loc)~2(R;.L~2) respectively for these two results: even in the autonomous case it is not straightforward to show the required asymptotic compactness of the flow with this regularity of the forcing term. Here we prove the asymptotic compactness of the corresponding processes by verifying the flattening property - also known as "Condition (C)". We also show, using the semigroup method, that a little additional regularity - f ∈ L_(loc)~p(R; H~(-1)) or f ∈ L_(loc)~p (R; L~2) for some p > 2 - is enough to ensure the existence of a compact pullback absorbing family (not only asymptotic compactness). Even in the autonomous case the existence of a compact absorbing set for this model is new when / has such limited regularity.
机译:本文讨论了非自治的二维Navier-Stokes方程在两个不同的空间L〜2和H〜1中存在回拉吸引子的情况。对于这两个结果,非自治强制项分别取L_(loc)〜2(R; H〜(-1))和L_(loc)〜2(R; .L〜2):即使在自治中在这种情况下,要用强制项的这种规律性来显示所需的渐近紧实度并不是一件容易的事。在这里,我们通过验证扁平化特性(也称为“条件(C)”)来证明相应过程的渐近紧致性。我们还使用半群方法证明了一些额外的规律-f∈L_(loc)〜p(R; H〜(-1))或f∈L_(loc)〜p(R; L〜2) p> 2-足以确保存在一个紧凑的回拉吸收族(不仅是渐进的紧凑性)。即使在自主情况下,当/具有如此有限的规则性时,该模型的紧凑吸收集的存在也是新的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号