首页> 外文期刊>Frontiers in Public Health >A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model
【24h】

A Simulation of a COVID-19 Epidemic Based on a Deterministic SEIR Model

机译:基于确定性SEIR模型的Covid-19流行病的模拟

获取原文
获取外文期刊封面目录资料

摘要

An epidemic disease caused by a new coronavirus has spread in Northern Italy with a strong contagion rate. We implement an SEIR model to compute the infected population and the number of casualties of this epidemic. The example may ideally regard the situation in the Italian Region of Lombardy, where the epidemic started on February 24, but by no means attempts to perform a rigorous case study in view of the lack of suitable data and the uncertainty of the different parameters, namely, the variation of the degree of home isolation and social distancing as a function of time, the initial number of exposed individuals and infected people, the incubation and infectious periods, and the fatality rate. First, we perform an analysis of the results of the model by varying the parameters and initial conditions (in order for the epidemic to start, there should be at least one exposed or one infectious human). Then, we consider the Lombardy case and calibrate the model with the number of dead individuals to date (May 5, 2020) and constrain the parameters on the basis of values reported in the literature. The peak occurs at day 37 (March 31) approximately, with a reproduction ratio R 0 of 3 initially, 1.36 at day 22, and 0.8 after day 35, indicating different degrees of lockdown. The predicted death toll is approximately 15,600 casualties, with 2.7 million infected individuals at the end of the epidemic. The incubation period providing a better fit to the dead individuals is 4.25 days, and the infectious period is 4 days, with a fatality rate of 0.00144/day [values based on the reported (official) number of casualties]. The infection fatality rate (IFR) is 0.57%, and it is 2.37% if twice the reported number of casualties is assumed. However, these rates depend on the initial number of exposed individuals. If approximately nine times more individuals are exposed, there are three times more infected people at the end of the epidemic and IFR = 0.47%. If we relax these constraints and use a wider range of lower and upper bounds for the incubation and infectious periods, we observe that a higher incubation period (13 vs. 4.25 days) gives the same IFR (0.6 vs. 0.57%), but nine times more exposed individuals in the first case. Other choices of the set of parameters also provide a good fit to the data, but some of the results may not be realistic. Therefore, an accurate determination of the fatality rate and characteristics of the epidemic is subject to knowledge of the precise bounds of the parameters. Besides the specific example, the analysis proposed in this work shows how isolation measures, social distancing, and knowledge of the diffusion conditions help us to understand the dynamics of the epidemic. Hence, it is important to quantify the process to verify the effectiveness of the lockdown.
机译:由新的冠状病毒引起的疫情引起的北部意大利具有强大的传感率。我们实施SEIR模型来计算受感染的人口和这种流行病的伤亡人数。该示例可以理想地尊重伦巴第意大利地区的情况,疫情于2月24日开始,但绝不会试图鉴于缺乏合适的数据和不同参数的不确定性来执行严格的案例研究,即,家庭隔离程度和社会疏散程度的变化作为时间的函数,初始曝光的人和感染的人,孵化和传染期,以及死亡率。首先,我们通过改变参数和初始条件(为了使疫情开始,对模型的结果进行分析(为了开始流行,应该至少有一个暴露或一种传染性人类)。然后,我们考虑伦巴第案例并校准模型与日期的死亡人数(5月5,2020)并基于文献中报告的值限制参数。峰值在第37天(3月31日)大致发生,最初,第22天的再现比率R 0,1.36,第35天后的0.8,表明不同程度的锁定。预测的死亡人数约为15,600伤亡人员,在流行病的尽头有270万感染者。提供更好地适应死亡人的潜伏期为4.25天,传染期为4天,死亡率为0.00144 /天[基于报告(官方)伤亡人数的值]。感染死亡率(IFR)为0.57%,如果假设报告的伤亡人数的两倍,则为2.37%。但是,这些税率取决于初始曝光的人数。如果曝光近9次,但疫情结束时,疫情结束的人和IFR = 0.47%有三次。如果我们放松这些约束并使用更广泛的下限和潜伏和传染期,我们观察到更高的潜伏期(13 vs.2.25天)给出相同的IFR(0.6 vs.0.57%),但九个在第一种情况下更暴露的个体。其他参数的其他选择还提供了良好的数据,但其中一些结果可能不是现实的。因此,准确确定流行病的死亡率和特征是考虑参数的精确范围的知识。除了具体的例子之外,在这项工作中提出的分析表明了分离措施,社会疏散和对扩散条件的知识有助于我们了解流行病的动态。因此,重要的是要量化验证锁定的有效性的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号