首页> 外文期刊>JMLR: Workshop and Conference Proceedings >Walking on Two Legs Learning Image Segmentation with Noisy Labels
【24h】

Walking on Two Legs Learning Image Segmentation with Noisy Labels

机译:走在两条腿的学习图像细分与嘈杂的标签

获取原文

摘要

Image segmentation automatically segments a target object in an image and has recently achieved prominent progress due to the development of deep convolutional neural networks (DCNNs). However, the quality of manual labels plays an essential role in the segmentation accuracy, while in practice it could vary a lot and in turn could substantially mislead the training process and limit the effectiveness. In this paper, we propose a novel label refinement and sample reweighting method, and a novel generative adversarial network (GAN) is introduced to fuse these two models into an integrated framework. We evaluate our approach on the publicly available datasets, and the results show our approach to be competitive when compared with other state-of-the-art approaches dealing with the noisy labels in image segmentation.
机译:图像分割自动分段图像中的目标对象,并且由于深度卷积神经网络(DCNN)的开发,最近实现了突出的进展。然而,手动标签的质量在分割准确性中起重要作用,而在实践中,它可能会有很多变化,而且可能会大大误导培训过程并限制有效性。在本文中,我们提出了一种新颖的标签改进和样本重新传递方法,并引入了一种新的生成对抗网络(GAN)以使这两种模型融入综合框架。我们在公开可用的数据集中评估我们的方法,结果表明,与其他最先进的方法相比,我们可以竞争的方法与图像分割中的嘈杂标签相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号