首页> 外文期刊>Polish maritime research >A New Low SNR Underwater Acoustic Signal Classification Method Based on Intrinsic Modal Features Maintaining Dimensionality Reduction
【24h】

A New Low SNR Underwater Acoustic Signal Classification Method Based on Intrinsic Modal Features Maintaining Dimensionality Reduction

机译:一种基于固有模态特征的新的低SNR水下声学信号分类方法,保持维数减少

获取原文

摘要

The classification of low signal-to-noise ratio (SNR) underwater acoustic signals in complex acoustic environments and increasingly small target radiation noise is a hot research topic.. This paper proposes a new method for signal processinga??low SNR underwater acoustic signal classification method (LSUASC)a??based on intrinsic modal features maintaining dimensionality reduction. Using the LSUASC method, the underwater acoustic signal was first transformed with the Hilbert-Huang Transform (HHT) and the intrinsic mode was extracted. the intrinsic mode was then transformed into a corresponding Mel-frequency cepstrum coefficient (MFCC) to form a multidimensional feature vector of the low SNR acoustic signal. Next, a semi-supervised fuzzy rough Laplacian Eigenmap (SSFRLE) method was proposed to perform manifold dimension reduction (local sparse and discrete features of underwater acoustic signals can be maintained in the dimension reduction process) and principal component analysis (PCA) was adopted in the process of dimension reduction to define the reduced dimension adaptively. Finally, Fuzzy C-Means (FCMs), which are able to classify data with weak features was adopted to cluster the signal features after dimensionality reduction. The experimental results presented here show that the LSUASC method is able to classify low SNR underwater acoustic signals with high accuracy.
机译:复杂声环境中低信噪比(SNR)水下声学信号的分类和越来越小的目标辐射噪声是一个热门研究主题。本文提出了一种新的信号处理方法,低SNR水下声学信号分类方法(LSUASC)a ??基于固有的模态特征,维持维数减少。使用LSUSC方法,用Hilbert-Huang变换(HHT)首先将水下声学信号转换,提取内在模式。然后将本征模式转化为相应的熔融频率谱系数(MFCC),以形成低SNR声学信号的多维特征向量。接下来,提出了一种半监控的模糊粗拉普利亚特征图(SSFRLE)方法以执行歧管尺寸减少(可以在尺寸还原过程中维持水下声学信号的局部稀疏和离散特征),并采用主成分分析(PCA)尺寸减小的过程自适应地限定了减小的尺寸。最后,采用了模糊C-il(FCMS),其能够将具有弱功能的数据进行分类,以在减少维度减少后聚类信号特征。这里提出的实验结果表明,Lsuasc方法能够以高精度对低SNR水下声学信号进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号