首页> 外文期刊>Complexity >Research on Sentiment Classification Algorithms on Online Review
【24h】

Research on Sentiment Classification Algorithms on Online Review

机译:在线评论中的情感分类算法研究

获取原文

摘要

The product online review text contains a large number of opinions and emotions. In order to identify the public’s emotional and tendentious information, we present reinforcement learning models in which sentiment classification algorithms of product online review corpus are discussed in this paper. In order to explore the classification effect of different sentiment classification algorithms, we conducted a research on Naive Bayesian algorithm, support vector machine algorithm, and neural network algorithm and carried out some comparison using a concrete example. The evaluation indexes and the three algorithms are compared in different lengths of sentence and word vector dimensions. The results present that neural network algorithm is effective in the sentiment classification of product online review corpus.
机译:产品在线评论文本包含大量意见和情绪。为了识别公众的情感和倾向的信息,我们在本文中讨论了产品在线审查语料库的增强学习模型。为了探讨不同情绪分类算法的分类效果,我们对Naive Bayesian算法进行了研究,支持向量机算法和神经网络算法,并使用具体示例进行了一些比较。评估索引和三种算法在不同长度的句子和单词矢量维中进行了比较。结果存在,神经网络算法在产品在线审查语料库的情绪分类中是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号