首页> 外文期刊>Scientific reports. >Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power
【24h】

Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power

机译:基于分布的肿瘤异质性测量对突变呼叫敏感,缺乏强烈的临床预测力

获取原文

摘要

Mutant allele frequency distributions in cancer samples have been used to estimate intratumoral heterogeneity and its implications for patient survival. However, mutation calls are sensitive to the calling algorithm. It remains unknown whether the relationship of heterogeneity and clinical outcome is robust to these variations. To resolve this question, we studied the robustness of allele frequency distributions to the mutation callers MuTect, SomaticSniper, and VarScan in 4722 cancer samples from The Cancer Genome Atlas. We observed discrepancies among the results, particularly a pronounced difference between allele frequency distributions called by VarScan and SomaticSniper. Survival analysis showed little robust predictive power for heterogeneity as measured by Mutant-Allele Tumor Heterogeneity (MATH) score, with the exception of uterine corpus endometrial carcinoma. However, we found that variations in mutant allele frequencies were mediated by variations in copy number. Our results indicate that the clinical predictions associated with MATH score are primarily caused by copy number aberrations that alter mutant allele frequencies. Finally, we present a mathematical model of linear tumor evolution demonstrating why MATH score is insufficient for distinguishing different scenarios of tumor growth. Our findings elucidate the importance of allele frequency distributions as a measure for tumor heterogeneity and their prognostic role.
机译:癌症样品中的突变等位基因分布已被用于估计腹腔内的异质性及其对患者存活的影响。但是,突变调用对呼叫算法敏感。它仍然未知是异质性和临床结果的关系是否对这些变化具有鲁棒性。为了解决这个问题,我们研究了来自癌症基因组地图集的4722个癌症样本中的等位基因频率分布对突变呼叫者的稳健性,和varscan。我们观察结果之间的差异,特别是Varscan和Somaticsniper称为等位基因频率分布之间的明显差异。除突变体肿瘤异质性(数学)得分,产量分析表现出很大的鲁棒预测力,其异质性除了子宫内膜子宫内膜癌外。然而,我们发现突变等位基因频率的变化是通过拷贝数的变化介导的。我们的结果表明,与数学评分相关的临床预测主要由拷贝数像差引起的,其改变突变等位基因频率。最后,我们提出了一种线性肿瘤演化的数学模型,证明了为什么数学评分不足以区分不同情景的肿瘤生长。我们的研究结果阐明了等位基因频率分布作为肿瘤异质性的措施及其预后作用的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号