...
首页> 外文期刊>RSC Advances >Controlling the bandgap in graphene/h-BN heterostructures to realize electron mobility for?high performing FETs
【24h】

Controlling the bandgap in graphene/h-BN heterostructures to realize electron mobility for?high performing FETs

机译:控制石墨烯/ h-BN异质结构中的带隙以实现高性能FET的电子迁移率

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Two dimensional van der Waals heterostructures have shown promise in electronic device applications because of their high charge carrier mobility, large surface area and large spin conductance value. However, it still remains a great challenge to design heterolayers with an electric field driven tunable electronic bandgap and stable geometry to obtain high electron mobility. Motivated by the inherent relationship between electronic bandgap and topological phases, we systematically explore the effect of external electric field on a model heterostructure of graphene sandwiched between boron nitride (h-BN) bilayers, an h-BN/graphene/h-BN heterostructure. We have studied the topological phase transition in the presence of spin orbit coupling (SoC) using density functional theory (DFT) supported by a tight-binding (TB) based Hamiltonian. The heterostructure system exhibits a nontrivial Z2 quantum spin Hall phase accompanied by bandgap closing and reopening, driven by the external applied electric field. The quantum phase transitions follow a w-like shape in the case of SoC with a clear distinction between topological and normal insulating phases. The electric field induced switching nature between nontrivial and trivial phases creates a potential platform for quantum spin Hall states in the layered structure. This field driven switching nature helps to increase the number of edge transport channels parametrically with quantized electrical conductance. The merits of this behavior of the layered heterostructure are beneficial for its use as a topological field-effect-transistor.
机译:二维范德华异质结构因其高的载流子迁移率,较大的表面积和较大的自旋电导值而在电子设备应用中显示出了希望。然而,设计具有电场驱动的可调电子带隙和稳定几何结构以获得高电子迁移率的异质层仍然是一个巨大的挑战。受电子带隙与拓扑相之间固有关系的影响,我们系统地研究了外部电场对夹在氮化硼(h-BN)双层之间的石墨烯模型异质结构(h-BN /石墨烯/ h-BN异质结构)的影响。我们已经使用基于紧密结合(TB)的哈密顿量支持的密度泛函理论(DFT)研究了自旋轨道耦合(SoC)存在下的拓扑相变。异质结构体系表现出一个非平凡的 Z 2 量子自旋霍尔相,伴随着带隙的闭合和重新打开,这是由外部施加的电场驱动的。在SoC的情况下,量子相变遵循w形的形状,在拓扑和正常绝缘相之间有明显的区别。电场引起的非平凡相和平凡相之间的切换特性为分层结构中的量子自旋霍尔态创造了一个潜在的平台。这种场驱动的开关特性有助于以量化的电导率参数化地增加边缘传输通道的数量。分层异质结构的这种行为的优点对于将其用作拓扑场效应晶体管是有益的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号