首页> 外文期刊>Nucleic acids research >A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data
【24h】

A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data

机译:结合序列和二级结构数据的寡核苷酸色谱保留建模的统计学习方法

获取原文

摘要

We propose a new model for predicting the retention time of oligonucleotides. The model is based on ν support vector regression using features derived from base sequence and predicted secondary structure of oligonucleotides. Because of the secondary structure information, the model is applicable even at relatively low temperatures where the secondary structure is not suppressed by thermal denaturing. This makes the prediction of oligonucleotide retention time for arbitrary temperatures possible, provided that the target temperature lies within the temperature range of the training data. We describe different possibilities of feature calculation from base sequence and secondary structure, present the results and compare our model to existing models.
机译:我们提出了一种预测寡核苷酸保留时间的新模型。该模型基于v支持向量回归,使用从碱基序列和寡核苷酸的预测二级结构得出的特征进行回归。由于具有二级结构信息,因此即使在较低的温度下,二级结构也不会因热变性而受到抑制,因此该模型也适用。只要目标温度在训练数据的温度范围内,就可以预测任意温度下寡核苷酸的保留时间。我们描述了从基本序列和二级结构进行特征计算的不同可能性,介绍了结果并将我们的模型与现有模型进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号