首页> 外文期刊>IFAC PapersOnLine >Parameter Estimation by Picard-Iteration for Biochemical Networks with Noisy Data
【24h】

Parameter Estimation by Picard-Iteration for Biochemical Networks with Noisy Data

机译:含噪声数据的生化网络的Picard迭代参数估计

获取原文

摘要

Mathematical models of biochemical reaction networks are widespread used to shade light and understand biological process. The validation and parametert estimation of such models is an important task to ensure the quality of the model. Many parameter estimation strategies for biochemical reaction networks exist by now. This work focuses on the use of an Picard iteration based parameter estimation approach for ODE-based dynamical models, which inherently exploits the model structure. In the frame of this work the influence of measurement errors and noise on the resulting parameter estimation is examined.
机译:生化反应网络的数学模型被广泛用于遮光和理解生物过程。此类模型的验证和参数估计是确保模型质量的重要任务。迄今为止,存在许多用于生化反应网络的参数估计策略。这项工作着重于将基于Picard迭代的参数估计方法用于基于ODE的动力学模型,该模型固有地利用了模型结构。在这项工作的框架中,研究了测量误差和噪声对最终参数估计的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号