首页> 外文期刊>Astronomy and astrophysics >How do velocity structure functions trace gas dynamics in simulated molecular clouds?
【24h】

How do velocity structure functions trace gas dynamics in simulated molecular clouds?

机译:速度结构函数如何跟踪模拟分子云中的气体动力学?

获取原文
       

摘要

Context. Supersonic disordered flows accompany the formation and evolution of molecular clouds (MCs). It has been argued that this is turbulence that can support against gravitational collapse and form hierarchical sub-structures. Aims. We examine the time evolution of simulated MCs to investigate: What physical process dominates the driving of turbulent flows? How can these flows be characterised? Are they consistent with uniform turbulence or gravitational collapse? Do the simulated flows agree with observations? Methods. We analysed three MCs that have formed self-consistently within kiloparsec-scale numerical simulations of the interstellar medium (ISM). The simulated ISM evolves under the influence of physical processes including self-gravity, stratification, magnetic fields, supernova-driven turbulence, and radiative heating and cooling. We characterise the flows using velocity structure functions (VSFs) with and without density weighting or a density cutoff, and computed in one or three dimensions. However, we do not include optical depth effects that can hide motions in the densest gas, limiting comparison of our results with observations. Results. In regions with sufficient resolution, the density-weighted VSFs initially appear to follow the expectations for uniform turbulence, with a first-order power-law exponent consistent with Larson’s size-velocity relationship. Supernova blast wave impacts on MCs produce short-lived coherent motions at large scales, increasing the scaling exponents for a crossing time. Gravitational contraction drives small-scale motions, producing scaling coefficients that drop or even turn negative as small scales become dominant. Removing the density weighting eliminates this effect as it emphasises the diffuse ISM. Conclusions. We conclude that two different effects coincidentally reproduce Larson’s size velocity relationship. Initially, uniform turbulence dominates, so the energy cascade produces VSFs that are consistent with Larson’s relationship. Later, contraction dominates and the density-weighted VSFs become much shallower or even inverted, but the relationship of the global average velocity dispersion of the MCs to their radius follows Larson’s relationship, reflecting virial equilibrium or free-fall collapse. The injection of energy by shocks is visible in the VSFs, but decays within a crossing time.
机译:上下文。超音速无序流伴随着分子云(MCs)的形成和演化。有人认为这是湍流,可以抵抗重力塌陷并形成分层的子结构。目的我们研究模拟MC的时间演变,以研究:哪个物理过程主导湍流?这些流量如何表征?它们是否与均匀的湍流或重力坍塌相符?模拟流量是否与观测值一致?方法。我们分析了在星际介质(ISM)的千秒尺度数值模拟中自洽形成的三个MC。模拟的ISM在包括自重,分层,磁场,超新星驱动的湍流以及辐射加热和冷却的物理过程的影响下演化。我们使用带有或不带有密度加权或密度截止的速度结构函数(VSF)来表征流,并在一维或三维中进行计算。但是,我们没有包括可能掩盖最稠密气体中运动的光学深度效应,这限制了我们将结果与观测值进行比较。结果。在具有足够分辨率的区域中,密度加权VSF最初似乎遵循对均匀湍流的期望,其一阶幂律指数与Larson的尺寸-速度关系一致。超新星爆炸波对MC的撞击会在大范围内产生短暂的相干运动,从而增加穿越时间的缩放指数。重力收缩驱动着小规模的运动,产生的缩放系数随着小规模的占主导地位而下降甚至变为负值。消除密度权重可消除此影响,因为它会增强扩散ISM。结论。我们得出结论,两种不同的影响恰好再现了拉森的大小速度关系。最初,均匀的湍流占主导地位,因此能量级联产生的VSF与Larson的关系一致。后来,收缩起主导作用,密度加权的VSF变得更浅甚至颠倒,但是MC的整体平均速度弥散与其半径之间的关系遵循拉森关系,反映出病毒平衡或自由落体塌陷。在VSF中可以看到通过冲击注入的能量,但是会在交叉时间内衰减。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号