首页> 外文期刊>Applied Surface Science >Determination of momentum accommodation coefficients and velocity distribution function for Noble gas-polymeric surface interactions using molecular dynamics simulation
【24h】

Determination of momentum accommodation coefficients and velocity distribution function for Noble gas-polymeric surface interactions using molecular dynamics simulation

机译:用分子动力学模拟确定惰性气体-聚合物表面相互作用的动量调节系数和速度分布函数

获取原文
获取原文并翻译 | 示例

摘要

Due to the momentum and energy exchange between the gas and solid surface molecules, by means of the accommodation coefficients in the Cercignani-Lampis-Lord (CLL) model, the velocity components used in the Direct Simulation Monte Carlo (DSMC) method can be studied more accurately. The coefficients can also be used in calculation of slip velocity, temperature jumping, drag force and shear stress. In the light of rising needs for polymers in industrial applications, the scattering behavior of noble gas molecules in their collision with a surface made of diglycidyl ether bisphenol A (DGEBA) epoxy resin, cured by tetrahydrophthalic anhydride (THPA) agent and reinforced by mull-layer graphite, was simulated and investigated by Molecular Dynamics (MD). The momentum and energy accommodation coefficients for gas-surface interactions were also calculated by MD simulation. The results indicated that temperature increase, change in the gas species, reduction in surface roughness, and increase in the Knudsen number (Kn) and the wall velocity could cause the accommodation coefficients to be less than one. Based on the scattering kernel of CLL boundary condition, a suitable distribution function for calculating the velocity components of noble gas molecules (e.g., argon molecules) after interaction with polymeric surface was proposed.
机译:由于气体和固体表面分子之间的动量和能量交换,借助于Cercignani-Lampis-Lord(CLL)模型中的调节系数,可以研究直接模拟Monte Carlo(DSMC)方法中使用的速度分量更精确地。该系数还可用于计算滑移速度,温度跳跃,拖曳力和剪切应力。鉴于工业上对聚合物的需求不断增长,稀有气体分子在与由二缩水甘油醚双酚A(DGEBA)环氧树脂制成,由四氢邻苯二甲酸酐(THPA)剂固化并经三元共聚物增强的表面碰撞时的散射行为分子动力学(MD)对层石墨进行了模拟和研究。还通过MD模拟计算了气-气相互作用的动量和能量容纳系数。结果表明,温度升高,气体种类变化,表面粗糙度降低以及克努森数(Kn)和壁速的增加可能会导致调节系数小于1。基于CLL边界条件的散射核,提出了一种合适的分布函数,用于计算稀有气体分子(例如氩分子)与聚合物表面相互作用后的速度分量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号