首页> 外文学位 >Physical-chemical dynamics of trace gases in wetland soils: Implications for the water quality and carbon sequestration functions of wetlands.
【24h】

Physical-chemical dynamics of trace gases in wetland soils: Implications for the water quality and carbon sequestration functions of wetlands.

机译:湿地土壤中微量气体的物理化学动力学:对湿地水质和碳固存功能的影响。

获取原文
获取原文并翻译 | 示例

摘要

Gas transfer phenomena are fundamental to the water quality and biogeochemical functions of wetlands. Characterizing the physical-chemical controls on wetland dissolved gas dynamics, and distinguishing those processes from the confounding influences of biochemical production and/or consumption, has been a challenge for wetland science. In this thesis I describe a set of laboratory, field, and modeling studies intended to resolve the eects of transport and gas exchange on the biogeochemistry of complex soil - plant systems. Results are discussed in the context of the water quality and carbon sequestration services provided by wetland ecosystems.;Gas tracers are used in push-pull measurements in well-controlled laboratory experiments and in natural wetland environments to quantify the kinetics of root-mediated gas exchange in situ and to account for the effects of trapped gas bubbles on rate determinations. Root uptake of volatile chemicals from wetland soils is partitioned into different biophysical mechanisms, and an empirical relationship is developed to scale root-mediated gas exchange kinetics between different chemical compounds. The controls on tidal marsh methane dynamics are explored in a year-long field study, and a complementary set of observations reveals how spatially varying gas exchange pathways influence spatiotemporal patterns of subsurface methane pools and contribute to seasonal lags in emissions. In the nal chapter, I shift my focus to a separate topic linking water resources and biogeochemistry, and develop a model for quantifying methane emissions from decomposing organic matter in pit latrines. A global water table model is used to determine aerobic versus anaerobic conditions in pit latrines, and is coupled with spatial sociodemographic data to estimate global emissions and to inform a discussion of mitigation opportunities and costs.
机译:气体转移现象是湿地水质和生物地球化学功能的基础。表征湿地溶解气体动力学的物理化学控制,并将这些过程与生化生产和/或消耗的混杂影响区分开来,一直是湿地科学面临的挑战。在这篇论文中,我描述了一组实验室,现场和建模研究,旨在解决运输和气体交换对复杂土壤-植物系统生物地球化学的影响。在湿地生态系统提供的水质和碳固存服务的背景下讨论了结果。气体示踪剂用于控制良好的实验室实验和自然湿地环境中的推挽测量中,以定量分析根系介导的气体交换的动力学原位,并考虑到气泡捕获对速率测定的影响。湿地土壤中挥发性化学物质的根吸收被划分为不同的生物物理机制,并且建立了经验关系以衡量不同化学化合物之间由根介导的气体交换动力学。在为期一年的野外研究中,对潮汐沼气动力学的控制进行了探索,一组补充性的观察结果揭示了空间变化的气体交换途径如何影响地下甲烷气藏的时空分布并导致排放的季节性滞后。在最后一章中,我将重点转移到将水资源与生物地球化学联系在一起的单独主题上,并开发了一个模型来量化坑厕中有机物分解产生的甲烷排放量。全球地下水位模型用于确定坑厕中的有氧与无氧条件,并与空间社会人口统计学数据相结合,以估算全球排放量,并为减缓机会和成本的讨论提供参考。

著录项

  • 作者

    Reid, Matthew Charles.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Environmental.;Environmental Sciences.;Biogeochemistry.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号