...
首页> 外文期刊>Applied and Environmental Microbiology >Simultaneous Fermentation of Glucose and Xylose to Butanol by Clostridium sp. Strain BOH3
【24h】

Simultaneous Fermentation of Glucose and Xylose to Butanol by Clostridium sp. Strain BOH3

机译:梭状芽孢杆菌同时发酵葡萄糖和木糖为丁醇。菌株BOH3

获取原文

摘要

Cellulose and hemicellulose constitute the major components in sustainable feedstocks which could be used as substrates for biofuel generation. However, following hydrolysis to monomer sugars, the solventogenic Clostridium will preferentially consume glucose due to transcriptional repression of xylose utilization genes. This is one of the major barriers in optimizing lignocellulosic hydrolysates that produce butanol. Unlike studies on existing bacteria, this study demonstrates that newly reported Clostridium sp. strain BOH3 is capable of fermenting 60 g/liter of xylose to 14.9 g/liter butanol, which is similar to the 14.5 g/liter butanol produced from 60 g/liter of glucose. More importantly, strain BOH3 consumes glucose and xylose simultaneously, which is shown by its capability for generating 11.7 g/liter butanol from a horticultural waste cellulosic hydrolysate containing 39.8 g/liter glucose and 20.5 g/liter xylose, as well as producing 11.9 g/liter butanol from another horticultural waste hemicellulosic hydrolysate containing 58.3 g/liter xylose and 5.9 g/liter glucose. The high-xylose-utilization capability of strain BOH3 is attributed to its high xylose-isomerase (0.97 U/mg protein) and xylulokinase (1.16 U/mg protein) activities compared to the low-xylose-utilizing solventogenic strains, such as Clostridium sp. strain G117. Interestingly, strain BOH3 was also found to produce riboflavin at 110.5 mg/liter from xylose and 76.8 mg/liter from glucose during the fermentation process. In summary, Clostridium sp. strain BOH3 is an attractive candidate for application in efficiently converting lignocellulosic hydrolysates to biofuels and other value-added products, such as riboflavin.
机译:纤维素和半纤维素是可持续原料的主要成分,可用作原料来生产生物燃料。但是,水解为单体糖后,由于木糖利用基因的转录抑制,产溶剂的梭菌将优先消耗葡萄糖。这是优化产生丁醇的木质纤维素水解产物的主要障碍之一。与对现有细菌的研究不同,该研究证明了新近报道的梭状芽胞杆菌。 BOH3菌株能够将60克/升的木糖发酵为14.9克/升的丁醇,这与由60克/升的葡萄糖产生的14.5克/升的丁醇相似。更重要的是,菌株BOH3同时消耗葡萄糖和木糖,这通过其从包含39.8克/升葡萄糖和20.5克/升木糖的园艺废纤维素水解物中产生11.7克/升丁醇的能力以及生产11.9克/升来证明。来自另一种园艺废物半纤维素水解产物的每升丁醇,其中木糖水解率为58.3克/升,葡萄糖为5.9克/升。 BOH3菌株的高木糖利用能力归因于与低木糖利用率的产溶剂菌株(如梭状芽胞杆菌)相比,其高木糖异构酶(0.97 U / mg蛋白)和木酮糖激酶(1.16 U / mg蛋白)活性。 。菌株G117。有趣的是,在发酵过程中,还发现菌株BOH3可以从木糖中产生110.5 mg / L,从葡萄糖中产生76.8 mg / L的核黄素。总之,梭菌属。 BOH3菌株是将木质纤维素水解产物有效转化为生物燃料和其他增值产品(如核黄素)的诱人候选物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号