首页> 外文期刊>BMC Genomics >Exploring the molecular basis of neuronal excitability in a vocal learner
【24h】

Exploring the molecular basis of neuronal excitability in a vocal learner

机译:探索声乐学习者神经元兴奋性的分子基础

获取原文
           

摘要

Vocal learning, the ability to learn to produce vocalizations through imitation, relies on specialized brain circuitry known in songbirds as the song system. While the connectivity and various physiological properties of this system have been characterized, the molecular genetic basis of neuronal excitability in song nuclei remains understudied. We have focused our efforts on examining voltage-gated ion channels to gain insight into electrophysiological and functional features of vocal nuclei. A previous investigation of potassium channel genes in zebra finches (Taeniopygia guttata) revealed evolutionary modifications unique to songbirds, as well as transcriptional specializations in the song system [Lovell PV, Carleton JB, Mello CV. BMC Genomics 14:470 2013]. Here, we expand this approach to sodium, calcium, and chloride channels along with their modulatory subunits using comparative genomics and gene expression analysis encompassing microarrays and in situ hybridization. We found 23 sodium, 38 calcium, and 33 chloride channel genes (HGNC-based classification) in the zebra finch genome, several of which were previously unannotated. We determined 15 genes are missing relative to mammals, including several genes (CLCAs, BEST2) linked to olfactory transduction. The majority of sodium and calcium but few chloride channels showed differential expression in the song system, among them SCN8A and CACNA1E in the direct motor pathway, and CACNG4 and RYR2 in the anterior forebrain pathway. In several cases, we noted a seemingly coordinated pattern across multiple nuclei (SCN1B, SCN3B, SCN4B, CACNB4) or sparse expression (SCN1A, CACNG5, CACNA1B). The gene families examined are highly conserved between avian and mammalian lineages. Several cases of differential expression likely support high-frequency and burst firing in specific song nuclei, whereas cases of?sparse patterns of expression may contribute to the unique electrophysiological signatures of distinct cell populations. These observations lay the groundwork for manipulations to determine how ion channels contribute to the neuronal excitability properties of vocal learning systems.
机译:声乐学习是学习通过模仿产生发声的能力,它依赖于鸣禽中称为歌曲系统的专门大脑电路。虽然已表征了该系统的连通性和各种生理特性,但仍未深入研究歌曲核中神经元兴奋性的分子遗传基础。我们一直致力于检查电压门控离子通道,以深入了解声带的电生理和功能特征。先前对斑马雀(Taeniopygia guttata)中钾离子通道基因的研究表明,鸣禽独特的进化修饰以及歌曲系统中的转录专长[Lovell PV,Carleton JB,Mello CV。 BMC Genomics 14:470 2013]。在这里,我们使用比较基因组学和基因表达分析(包括微阵列和原位杂交)将这种方法扩展到钠,钙和氯通道及其调节性亚基。我们在斑马雀科的基因组中发现了23个钠,38个钙和33个氯离子通道基因(基于HGNC的分类),其中一些以前没有注释。我们确定相对于哺乳动物缺少15个基因,包括与嗅觉转导相关的几个基因(CLCA,BEST2)。钠和钙的大部分,但很少的氯离子通道在歌曲系统中显示差异表达,其中直接运动通路中的SCN8A和CACNA1E,前脑前通路中的CACNG4和RYR2。在几种情况下,我们注意到跨多个核(SCN1B,SCN3B,SCN4B,CACNB4)或稀疏表达(SCN1A,CACNG5,CACNA1B)的看似协调的模式。检查的基因家族在鸟类和哺乳动物谱系之间是高度保守的。差异表达的几种情况可能支持特定歌曲核中的高频和爆发发射,而稀疏表达方式的情况可能有助于不同细胞群体的独特电生理特征。这些发现为确定离子通道如何促进声乐学习系统的神经元兴奋性特性的操作打下了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号