首页> 外文期刊>The Journal of biological chemistry >Polyamine-mediated channel block of ionotropic glutamate receptors and its regulation by auxiliary proteins
【24h】

Polyamine-mediated channel block of ionotropic glutamate receptors and its regulation by auxiliary proteins

机译:聚胺介导的离子型谷氨酸受体的通道阻滞及其辅助蛋白的调控

获取原文

摘要

Most excitatory neurotransmission in the mammalian brain is mediated by a family of plasma membrane–bound signaling proteins called ionotropic glutamate receptors (iGluRs). iGluRs assemble at central synapses as tetramers, forming a central ion-channel pore whose primary function is to rapidly transport Na+ and Ca2+ in response to binding the neurotransmitter l-glutamic acid. The pore of iGluRs is also accessible to bulkier cytoplasmic cations, such as the polyamines spermine, spermidine, and putrescine, which are drawn into the permeation pathway, but get stuck and block the movement of other ions. The degree of this polyamine-mediated channel block is highly regulated by processes that control the free cytoplasmic polyamine concentration, the membrane potential, or the iGluR subunit composition. Recently, an additional regulation by auxiliary proteins, most notably transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory proteins (TARPs), cornichons, and neuropilin and tolloid-like proteins (NETOs), has been identified. Here, I review what we have learned of polyamine block of iGluRs and its regulation by auxiliary subunits. TARPs, cornichons, and NETOs attenuate the channel block by enabling polyamines to exit the pore. As a result, polyamine permeation occurs at more negative and physiologically relevant membrane potentials. The structural basis for enhanced polyamine transport remains unresolved, although alterations in both channel architecture and charge-screening mechanisms have been proposed. That auxiliary subunits can attenuate the polyamine block reveals an unappreciated impact of polyamine permeation in shaping the signaling properties of neuronal AMPA- and kainate-type iGluRs. Moreover, enhanced polyamine transport through iGluRs may have a role in regulating cellular polyamine levels.
机译:哺乳动物脑中大多数兴奋性神经传递是由称为离子型谷氨酸受体(iGluRs)的质膜结合信号蛋白家族介导的。 iGluRs在中央突触处组装成四聚体,形成中央离子通道孔,其主要功能是响应于结合神经递质1-谷氨酸而迅速转运Na +和Ca2 +。 iGluRs的孔也可用于较大的细胞质阳离子,例如多胺精胺,亚精胺和腐胺,它们被吸入渗透途径,但被卡住并阻止其他离子的运动。这种多胺介导的通道阻滞的程度受控制游离细胞质多胺浓度,膜电位或iGluR亚基组成的过程高度调节。最近,辅助蛋白,尤其是跨膜AMPA(α-氨基-3-羟基-5-甲基-4-异恶唑丙酸)受体调节蛋白(TARP),角膜,神经纤毛蛋白和类风铃蛋白(NETO)的附加调控。 ,已被确定。在这里,我回顾了我们对iGluRs的多胺嵌段及其辅助亚基调控的了解。 TARP,角质和NETO通过使多胺离开孔而减弱了通道阻滞。结果,多胺渗透发生在更负的和生理相关的膜电位上。尽管已经提出了改变通道结构和电荷筛选机制的建议,但增强多胺转运的结构基础仍未解决。辅助亚基可以减弱多胺嵌段,揭示了多胺渗透对塑造神经元AMPA型和海藻酸盐型iGluRs信号传导特性的影响不明显。此外,通过iGluRs增强的多胺转运可能在调节细胞多胺水平中发挥作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号