首页> 外文期刊>World Allergy Organization Journal >Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network
【24h】

Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network

机译:基于症状相关异构网络表示学习的Herb目标预测

获取原文

摘要

Traditional Chinese Medicine (TCM) has received increasing attention as a complementary approach or alternative to modern medicine. However, experimental methods for identifying novel targets of TCM herbs heavily relied on the current available herb-compound-target relationships. In this work, we present an Herb-Target Interaction Network (HTINet) approach, a novel network integration pipeline for herb-target prediction mainly relying on the symptom related associations. HTINet focuses on capturing the low-dimensional feature vectors for both herbs and proteins by network embedding, which incorporate the topological properties of nodes across multi-layered heterogeneous network, and then performs supervised learning based on these low-dimensional feature representations. HTINet obtains performance improvement over a well-established random walk based herb-target prediction method. Furthermore, we have manually validated several predicted herb-target interactions from independent literatures. These results indicate that HTINet can be used to integrate heterogeneous information to predict novel herb-target interactions.
机译:作为现代医学的补充方法或替代方法,中医(TCM)受到越来越多的关注。但是,用于鉴定中草药新靶标的实验方法在很大程度上依赖于当前可用的草药-化合物-靶标关系。在这项工作中,我们提出了一种草药-靶标相互作用网络(HTINet)方法,这是一种主要依靠症状相关协会进行草药靶标预测的新型网络集成管道。 HTINet专注于通过网络嵌入捕获草药和蛋白质的低维特征向量,这些向量融合了跨多层异构网络的节点的拓扑特性,然后基于这些低维特征表示执行监督学习。 HTINet与基于行之有效的基于随机行走的草药目标预测方法相比,性能得到了提高。此外,我们已经从独立文献中手动验证了几种预测的草药-靶标相互作用。这些结果表明,HTINet可用于整合异质信息,以预测新的草药-靶标相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号