首页> 外文期刊>The Open Surface Science Journal >The Enhancement Effect at Local Reflectance and Emission Back to Apertureless SNOM Tips in the Shear-Force Gap
【24h】

The Enhancement Effect at Local Reflectance and Emission Back to Apertureless SNOM Tips in the Shear-Force Gap

机译:剪切力间隙中无反射SNOM尖端的局部反射和发射的增强效果

获取原文
           

摘要

Physical basics, technique, equipment, proper experimental conditions, and performance of aperturelessreflection back-to-the-fiber SNOM (Rayleigh, Raman, fluorescence) under shear-force control are reported. Thistechnique achieves optical resolutions of < 10 nm on flat surfaces and < 20 nm in the presence of topographies with verysharp tips (< 10 - 20 nm end radius). It works due to the large enhancement of the reflection to very sharp tapereduncoated tips in the shear-force gap. The dependence of preset vibration damping is linear with variations betweendifferent chemical entities. Thus, the optical contrast appears as chemical contrast in reflection or emission. Suchenhancement is however not obtained with blunt tips (> 30 nm end radius or broken). Typical images for all thinkablesituations show that topographical artifacts are excluded and that, unlike conventional aperture SNOM, precise sitecoincidence of optical contrast and chemical variation (often traceable in the topography) is obtained on planes, hills,slopes, depressions, and hidden geodes, even on very rough surfaces that give, however, no optical contrast if they arechemically uniform. Furthermore, positive and negative contrast on hills, slopes, and depressions is featured within thesame SNOM image each. Object sizes range from 30 nm in small scans to 25 μm in 40 μm wide scans. The versatiletechnique is therefore qualified for applications on real world samples without severe manipulations just as they occur inscience, technique, and medicine. The principal differences of apertureless SNOM with collection in the shear-force gapand conventional SNOM are worked out.
机译:报道了在剪切力控制下的物理基础,技术,设备,适当的实验条件以及无孔反射回到光纤的SNOM(Rayleigh,Raman,荧光)的性能。该技术可在平坦表面上实现<10 nm的光学分辨率,并在具有非常尖锐尖端(<10-20 nm端部半径)的形貌的情况下实现<20 nm的光学分辨率。它之所以起作用,是因为在剪切力间隙中,对非常尖锐的锥形未涂层尖端的反射得到了大幅增强。预设振动阻尼的依赖性与不同化学实体之间的变化呈线性关系。因此,光学对比在反射或发射中表现为化学对比。但是,用钝头(> 30 nm的末端半径或破裂)无法获得这种增强。所有可想到位置的典型图像均显示排除了地形假象,并且与传统的SNOM孔径不同,在平面,丘陵,坡度,凹陷和隐蔽测地上甚至可以得到光学对比度和化学变化(通常可在地形中找到)的精确位置重合。在非常粗糙的表面上,如果化学上均一,则不会产生光学对比。此外,在同一张SNOM图像中,每个山丘,山坡和洼地都有正反差。物体的大小范围从小扫描的30 nm到宽40μm的扫描的25μm。因此,该通用技术适用于现实世界中的样品,无需像科学,技术和医学一样经过严格的处理。研究了无孔SNOM在剪切力间隙与常规SNOM之间的主要区别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号