首页> 外文期刊>The Internet Journal of Microbiology >Characterization of Bacillus cereus isolated from fermented cabbage and conventional optimization of extracellular protease production
【24h】

Characterization of Bacillus cereus isolated from fermented cabbage and conventional optimization of extracellular protease production

机译:从发酵白菜分离的蜡状芽孢杆菌的表征和细胞外蛋白酶生产的常规优化

获取原文
       

摘要

A strain of Bacillus cereus, isolated from fermented cabbage, was tested a laboratory scale in order to evaluate the production of extracellular protease on batch cultivation in Modified Basal Medium without agar (MB). Furthermore optimization of culture medium and cultivation conditions were carried out too.B. cereus spp. presented a typical growth kinetic with a short lag phase. The best conditions for B. cereus spp. growth were found at pH 7, 32oC and in MB with glucose. Respecting to protease production, the best expression were at pH 8 and 32oC. At this temperature the addition of modifiers in the fermentation media did not produce a significant improvement in the protease production. The novel properties of the protease liberated by this strain could have important benefic for the biotechnology industry. Introduction The biosynthesis of proteolytic enzymes by microorganisms is not only of scientific but also of great practical importance. Bacteria, moulds and yeast are some of the microorganisms that are able to produce proteases. Proteases are the most important kind of enzymes from an industrial point of view; they execute a large variety of functions and have important biotechnological applications. They could be useful in leather processing, laundry detergents, producing of protein hydrolysates and food processing (Salem S.R. et al., 2009). Proteases are commonly classified according to their optimum pH: acidic protease, neutral protease and alkaline protease. There have been extensive researches on the properties and functionalities of acidic or alkaline proteases (Dunn-Coleman N. et al.). Among bacteria, Bacillus strains are the most important producers of commercial proteases (Ghorbel-Frikha B. et al., 2005), being specific producers of extracellular protease. Strains of Bacillus cereus possess high proteolytic potential, expressed by their ability to synthesize and excrete protease into the medium. This spore forming, mesophilic and relatively anaerobic rod is potent in terms of biosynthesis of various hydrolytic enzymes, including proteases, alpha- and beta-glucanases or lipases. Proteolytic enzymes containing serine proteinases (Shaheen M. et al., 2008), Ca2+- and Zn2+- dependent metaloproteinases (Karbalaei-Heidari H.R. et al., 2007), keratinases (Ghosh A. et al., 2008; Brandelli A. et al., 2005) and collagenases (Nip W.K. et al., 2006) are known to be produced by B. cereus. Microbial proteases account for approximately 60% of the total enzyme sales in the world (Banik R.M. et al., 2004). One of the several challenges faced by industrial application of microbial proteases is to obtain its optimal activity and stability. Each organism or strain has its own special conditions for maximum enzyme production. Extracellular protease production by microorganisms is highly influenced by media components, variation in carbonitrogen ratio, presence of some easily metabolically sugars, such as glucose (Beg Q.A.K., 2003) and presence of metal ions (Secades P. et al., 1999). Several others factors, such as aeration, inoculums density, pH, temperature and incubation time also affect the amount of protease production and their interaction plays an important role in the synthesis of these enzymes (Puri S. et al., 2002). Zambare et al. (2007) described an extracellular protease produced by Bacillus cereus that grow on a medium containing starch, wheat bran and soya flour (SWS).Taken into account the potential uses of the highly demanded Bacillus proteases, there is a need for the research of new strains of bacteria that produce enzymes with novel properties and the development of low cost industrial medium formulations. In commercial practice, the optimization of medium composition is done to maintain a balance between the various medium components, thus minimizing the amount of unutilized components at the end of fermentation. Recently, in a previous work (Pérez Borla et al., 2009) through the utilization of a simple and re
机译:在实验室规模上测试了从发酵白菜中分离出的蜡状芽孢杆菌菌株,以评估在无琼脂的改良基础培养基(MB)中分批培养时细胞外蛋白酶的产生。此外,还进行了培养基和培养条件的优化。蜡状菌属表现出典型的生长动力学,具有短的滞后阶段。蜡状芽孢杆菌的最佳条件。在pH 7、32oC和含葡萄糖的MB中发现生长。关于蛋白酶的产生,最佳的表达是在pH 8和32oC下。在此温度下,在发酵培养基中添加修饰剂不会使蛋白酶的产量显着提高。由该菌株释放的蛋白酶的新特性可能对生物技术工业具有重要的益处。引言微生物对蛋白水解酶的生物合成不仅具有科学意义,而且具有重要的现实意义。细菌,霉菌和酵母菌是一些能够产生蛋白酶的微生物。从工业角度看,蛋白酶是最重要的酶。它们执行多种功能,并具有重要的生物技术应用。它们可用于皮革加工,洗衣粉,蛋白质水解产物的生产和食品加工(Salem S.R.等,2009)。蛋白酶通常根据其最佳pH进行分类:酸性蛋白酶,中性蛋白酶和碱性蛋白酶。已经对酸性或碱性蛋白酶的性质和功能进行了广泛的研究(Dunn-Coleman N.等人)。在细菌中,芽孢杆菌属菌株是商业蛋白酶最重要的生产者(Ghorbel-Frikha B.等人,2005),是细胞外蛋白酶的特异性生产者。蜡状芽孢杆菌菌株具有很高的蛋白水解潜能,其表达能力是将蛋白酶合成和分泌到培养基中。这种孢子形成,嗜温和相对厌氧的棒在各种水解酶(包括蛋白酶,α-和β-葡聚糖酶或脂肪酶)的生物合成方面很有效。含有丝氨酸蛋白酶的蛋白水解酶(Shaheen M.等人,2008),依赖Ca2 +和Zn2 +的金属蛋白酶(Karbalaei-Heidari HR等人,2007),角蛋白酶(Ghosh A.等人,2008; Brandelli A.等人)已知由蜡状芽孢杆菌产生(例如,等人,2005)和胶原酶(Nip WK等,2006)。微生物蛋白酶约占世界酶总销量的60%(Banik R.M. et al。,2004)。工业应用微生物蛋白酶面临的几个挑战之一是获得其最佳的活性和稳定性。每个生物或菌株都有其自己的特殊条件,以最大程度地产生酶。微生物产生的细胞外蛋白酶受到培养基成分,碳/氮比的变化,某些易代谢糖(例如葡萄糖)的存在(Beg QAK,2003年)和金属离子的存在(Secades P.等人,1999)的影响。 。充气,接种量,pH,温度和孵育时间等其他因素也会影响蛋白酶的产生量,它们的相互作用在这些酶的合成中起着重要的作用(Puri S.等,2002)。 Zambare等。 (2007)描述了蜡状芽孢杆菌产生的一种细胞外蛋白酶,其生长在含有淀粉,麦麸和大豆粉(SWS)的培养基上。考虑到需求量很大的芽孢杆菌蛋白酶的潜在用途,有必要研究新的产生新特性酶的细菌菌株以及低成本工业培养基配方的开发。在商业实践中,进行培养基组成的优化以维持各种培养基组分之间的平衡,从而使发酵结束时未利用组分的量最小化。最近,在先前的工作中(PérezBorla等,2009),通过使用

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号