首页> 外文期刊>PLoS Genetics >A Reversible Histone H3 Acetylation Cooperates with Mismatch Repair and Replicative Polymerases in Maintaining Genome Stability
【24h】

A Reversible Histone H3 Acetylation Cooperates with Mismatch Repair and Replicative Polymerases in Maintaining Genome Stability

机译:可逆的组蛋白H3乙酰化与错配修复和复制性聚合酶合作,保持基因组稳定性

获取原文
           

摘要

Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae , Rtt109-dependent acetylation of histone H3 on K56 is an abundant modification that is introduced in chromatin in S phase and removed by Hst3 and Hst4 in G2/M. We show here that the chromatin deacetylation on histone H3 K56 by Hst3 and Hst4 is required for the suppression of spontaneous gross chromosomal rearrangements, base substitutions, 1-bp insertions/deletions, and complex mutations. The rate of base substitutions in hst3 Δ hst4 Δ is similar to that in isogenic mismatch repair-deficient msh2 Δ mutant. We also provide evidence that H3 K56 acetylation by Rtt109 is important for safeguarding DNA from small insertions/deletions and complex mutations. Furthermore, we reveal that both the deacetylation and acetylation on histone H3 K56 are involved in mutation avoidance mechanisms that cooperate with mismatch repair and the proofreading activities of replicative DNA polymerases in suppressing spontaneous mutagenesis. Our results suggest that cyclic acetylation and deacetylation of chromatin contribute to replication fidelity and play important roles in the protection of nuclear DNA from diverse spontaneous mutations. Author Summary Mutations strongly predispose humans to cancer and many other diseases. Despite significant progress, we still do not fully understand the molecular mechanisms that protect us from mutations. Human DNA is part of a highly organized complex called chromatin. Chromatin regulates our development, metabolism, and behavior. Special enzymes modify chromatin by the addition and removal of chemical groups. Acetylation and deacetylation of chromatin have been conserved during evolution. The involvement of chromatin and its modifications in the protection of DNA from mutations is poorly understood. The yeast Saccharomyces cerevisiae is an excellent model for studying the connection between chromatin modifications and mutations. Using this model, we found that the deacetylation and acetylation of chromatin on histone H3 lysine 56 are required for preventing a wide range of spontaneous mutations. Future studies will determine whether acetylation and deacetylation of chromatin are involved in protecting DNA from mutations in human cells.
机译:突变是进化和遗传疾病的主要驱动力。在真核生物中,在染色质环境中会产生突变,但是对染色质对诱变的影响知之甚少。先前的研究已经确定,在啤酒酵母中,组蛋白H3在K56上的Rtt109依赖性乙酰化是一种丰富的修饰,在S期被引入染色质,并在G2 / M中被Hst3和Hst4去除。我们在这里显示,Hst3和Hst4对组蛋白H3 K56的染色质脱乙酰作用对于抑制自发的总染色体重排,碱基取代,1-bp插入/缺失和复杂突变是必需的。 hst3Δhst4Δ中的碱基替代率与等基因错配修复缺陷型msh2Δ突变体中的碱基替代率相似。我们还提供了证据,表明Rtt109的H3 K56乙酰化对于保护DNA免受小插入/缺失和复杂突变很重要。此外,我们揭示,组蛋白H3 K56上的脱乙酰基和乙酰化均参与与错配修复和复制性DNA聚合酶在抑制自发突变中的校对活性协同作用的避免突变机制。我们的结果表明,染色质的循环乙酰化和脱乙酰化有助于复制保真度,并在保护核DNA免受各种自发突变的影响中发挥重要作用。作者摘要突变很容易使人患上癌症和许多其他疾病。尽管取得了重大进展,但我们仍不完全了解保护我们免受突变影响的分子机制。人类DNA是称为染色质的高度组织化复合物的一部分。染色质调节我们的发育,新陈代谢和行为。特殊的酶通过添加和去除化学基团来修饰染色质。在进化过程中,染色质的乙酰化和脱乙酰化一直保持着。染色质及其修饰参与保护DNA免受突变的了解很少。酵母酿酒酵母是研究染色质修饰和突变之间关系的极好模型。使用该模型,我们发现组蛋白H3赖氨酸56上染色质的脱乙酰化和乙酰化对于防止多种自发突变是必需的。未来的研究将确定染色质的乙酰化和脱乙酰化是否参与保护DNA免受人类细胞突变的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号