首页> 外文期刊>SSM - Population Health >Estimating the burden of child malnutrition across parliamentary constituencies in India: A methodological comparison
【24h】

Estimating the burden of child malnutrition across parliamentary constituencies in India: A methodological comparison

机译:估算印度议会选区儿童营养不良的负担:方法比较

获取原文
获取外文期刊封面目录资料

摘要

In India, data on key developmental indicators used to formulate policies and interventions are routinely available for the administrative unit of districts but not for the political unit of parliamentary constituencies (PC). Recently, Swaminathan et al. proposed two methodologies to generate PC estimates using randomly displaced GPS locations of the sampling clusters (‘direct’) and by building a crosswalk between districts and PCs using boundary shapefiles (‘indirect’). We advance these methodologies by using precision-weighted estimations based on hierarchical logistic regression modeling to account for the complex survey design and sampling variability. We exemplify this application using the latest National Family Health Survey (NFHS, 2016) to generate PC-level estimates for two important indicators of child malnutrition – stunting and low birth weight – that are being monitored by the Government of India for the National Nutrition Mission targets. Overall, we found a substantial variation in child malnutrition across 543 PCs. The different methodologies yielded highly consistent estimates with correlation ranging r = 0.92-0.99 for stunting and r = 0.81-0.98 for low birth weight. For analyses involving data with comparable nature to the NFHS (i.e., complex data structure and possibility to identify a potential PC membership), modeling for precision-weighted estimates and direct methodology are preferable. Further field work and data collection at the PC level are necessary to accurately validate our estimates. An ideal solution to overcome this gap in data for PCs would be to make PC identifiers available in routinely collected surveys and the Census.
机译:在印度,通常可向地区的行政部门提供有关用于制定政策和干预措施的关键发展指标的数据,但不适用于议会选区的政治部门。最近,Swaminathan等。提出了两种方法来生成PC估计值,这些方法使用采样簇的随机位移GPS位置(“直接”)和使用边界shapefile(“间接”)在地区和PC之间建立人行横道。我们通过使用基于分层逻辑回归模型的精确加权估计来解决复杂的调查设计和抽样变异性,从而改进这些方法。我们使用最新的《全国家庭健康调查》(NFHS,2016)来举例说明该应用,以生成PC级的儿童营养不良的两个重要指标(发育迟缓和低出生体重)的估计值,印度政府正在为国家营养任务进行监测目标。总体而言,我们发现543台PC的儿童营养不良状况存在很大差异。不同的方法得出的估计值高度一致,发育迟缓的相关性范围为r = 0.92-0.99,低出生体重的相关性范围为r = 0.81-0.98。对于涉及与NFHS具有可比性的数据的分析(即复杂的数据结构和识别潜在PC成员的可能性),最好使用精确加权估计和直接方法进行建模。在PC级别进行进一步的现场工作和数据收集对于准确验证我们的估计是必要的。克服PC数据缺口的理想解决方案是在常规收集的调查和人口普查中提供PC标识符。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号