...
首页> 外文期刊>Microbial Cell >Evolution of substrate specificity in the Nucleobase-Ascorbate Transporter (NAT) protein family
【24h】

Evolution of substrate specificity in the Nucleobase-Ascorbate Transporter (NAT) protein family

机译:核碱基抗坏血酸转运蛋白(NAT)蛋白家族中底物特异性的演变

获取原文

摘要

L-ascorbic acid (vitamin C) is an essential metabolite in animals and plants due to its role as an enzyme co-factor and antioxidant activity. In most eukaryotic organisms, L-ascorbate is biosynthesized enzymatically, but in several major groups, including the primate suborder Haplorhini, this ability is lost due to gene truncations in the gene coding for L-gulonolactone oxidase. Specific ascorbate transporters (SVCTs) have been characterized only in mammals and shown to be essential for life. These belong to an extensively studied transporter family, called Nucleobase-Ascorbate Transporters (NAT). The prototypic member of this family, and one of the most extensively studied eukaryotic transporters, is UapA, a uric acid-xanthine/H+ symporter in the fungus Aspergillus nidulans. Here, we investigate molecular aspects of NAT substrate specificity and address the evolution of ascorbate transporters apparently from ancestral nucleobase transporters. We present a phylogenetic analysis, identifying a distinct NAT clade that includes all known L-ascorbate transporters. This clade includes homologues only from vertebrates, and has no members in non-vertebrate or microbial eukaryotes, plants or prokaryotes. Additionally, we identify within the substrate-binding site of NATs a differentially conserved motif, which we propose is critical for nucleobase versus ascorbate recognition. This conclusion is supported by the amino acid composition of this motif in distinct phylogenetic clades and mutational analysis in the UapA transporter. Together with evidence obtained herein that UapA can recognize with extremely low affinity L-ascorbate, our results support that ascorbate-specific NATs evolved by optimization of a sub-function of ancestral nucleobase transporters.
机译:L-抗坏血酸(维生素C)在动植物中是必需的代谢产物,因为它作为酶的辅助因子和抗氧化活性。在大多数真核生物中,L-抗坏血酸是通过酶法生物合成的,但是在包括灵长类亚目Haplorhini在内的几个主要群体中,由于编码L-古洛糖酸内酯氧化酶的基因被截短,这种能力丧失了。特定的抗坏血酸转运蛋白(SVCT)仅在哺乳动物中得到鉴定,并显示出对生命至关重要。这些属于广泛研究的转运蛋白家族,称为核碱基抗坏血酸转运蛋白(NAT)。该家族的原型成员,也是最广泛研究的真核转运蛋白之一,是UapA,一种在构巢曲霉中的尿酸-黄嘌呤/ H + 转运蛋白。在这里,我们研究了NAT底物特异性的分子方面,并从祖先的核碱基转运蛋白来看,显然解决了抗坏血酸转运蛋白的演变。我们提出了系统发育分析,确定了一个独特的NAT进化枝,其中包括所有已知的L-抗坏血酸转运蛋白。该进化枝仅包括来自脊椎动物的同源物,并且在非脊椎动物或微生物的真核生物,植物或原核生物中没有成员。另外,我们在NATs的底物结合位点内鉴定了一个差异保守的基序,我们提出该基序对于核碱基与抗坏血酸的识别至关重要。该结论由不同系统发生进化枝中该基序的氨基酸组成和UapA转运蛋白的突变分析所支持。结合本文获得的证据表明UapA可以以极低的亲和力识别L-抗坏血酸,我们的结果支持了通过优化祖先核碱基转运蛋白亚功能而进化出的抗坏血酸特异性NAT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号