首页> 外文期刊>Nae more, journal of marine sciences >The Development of a New Methodology for Automated Sounding Selection on Nautical Charts
【24h】

The Development of a New Methodology for Automated Sounding Selection on Nautical Charts

机译:航海图自动测深选择新方法的发展

获取原文
获取外文期刊封面目录资料

摘要

Conducting a manual sounding selection for display on official nautical charts is time-consuming and is becoming more challenging because of the high-quality hydrographic data. Boosted by the development of surveying technology, research of automated sounding selection capabilities is a logical step in improving production of nautical charts. In this work a new methodology for automated sounding selection based on areas of sudden change in the sea floor relief is defined. Quantitative parameters of the seafloor obtained from the survey, slope and aspect are used to segregate and classify seafloor features significant for navigation. By detecting their boundaries, principles of sounding selection for each class are applied in order to represent all the relevant information regarding a specific feature. Spatial accuracy analysis is conducted on two large multibeam hydrographic surveys by comparing the obtained results with the automated sounding selection feature within dKart Editor and the manually selected soundings on official nautical charts. The RMSE (Root Mean Square Error) of vertical deviations and its relation to terrain characteristics within the initial quality assessment is encouraging and suggests that the proposed automated methodology represents an improvement compared to dKart and could be applied with the same effectiveness as a manual method.
机译:进行手动测深选择以显示在官方海图上既耗时,又由于高质量的水文数据而变得更具挑战性。在测量技术发展的推动下,自动探测选择功能的研究是改进航海图生产的逻辑步骤。在这项工作中,定义了一种新的方法,用于根据海床浮雕的突然变化区域自动选择测深。从勘测,坡度和坡度获得的海底定量参数用于对航海重要的海底特征进行分类和分类。通过检测它们的边界,可以应用每个类别的探测选择原则,以表示有关特定功能的所有相关信息。通过将获得的结果与dKart Editor中的自动测深选择功能和官方航海图上手动选择的测深进行比较,对两个大型多波束水文测量进行空间精度分析。在初始质量评估中,垂直偏差的RMSE(均方根误差)及其与地形特征的关系令人鼓舞,这表明与dKart相比,所提出的自动化方法代表了一种进步,并且可以与手动方法一样有效地应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号