首页> 外文期刊>MBio >Distinct Physiological Roles of the Three Ferredoxins Encoded in the Hyperthermophilic Archaeon Thermococcus kodakarensis
【24h】

Distinct Physiological Roles of the Three Ferredoxins Encoded in the Hyperthermophilic Archaeon Thermococcus kodakarensis

机译:嗜热古细菌中三种编码的铁氧还蛋白的不同生理作用柯达卡热球菌

获取原文
           

摘要

High-energy electrons liberated during catabolic processes can be exploited for energy-conserving mechanisms. Maximal energy gains demand these valuable electrons be accurately shuttled from electron donor to appropriate electron acceptor. Proteinaceous electron carriers such as ferredoxins offer opportunities to exploit specific ferredoxin partnerships to ensure that electron flux to critical physiological pathways is aligned with maximal energy gains. Most species encode many ferredoxin isoforms, but very little is known about the role of individual ferredoxins in most systems. Our results detail that ferredoxin isoforms make largely unique and distinct protein interactions in vivo and that flux through one ferredoxin often cannot be recovered by flux through a different ferredoxin isoform. The results obtained more broadly suggest that ferredoxin isoforms throughout biological life have evolved not as generic electron shuttles, but rather serve as selective couriers of valuable low-potential electrons from select electron donors to desirable electron acceptors. ABSTRACT Control of electron flux is critical in both natural and bioengineered systems to maximize energy gains. Both small molecules and proteins shuttle high-energy, low-potential electrons liberated during catabolism through diverse metabolic landscapes. Ferredoxin (Fd) proteins—an abundant class of Fe-S-containing small proteins—are essential in many species for energy conservation and ATP production strategies. It remains difficult to model electron flow through complicated metabolisms and in systems in which multiple Fd proteins are present. The overlap of activity and/or limitations of electron flux through each Fd can limit physiology and metabolic engineering strategies. Here we establish the interplay, reactivity, and physiological role(s) of the three ferredoxin proteins in the model hyperthermophile Thermococcus kodakarensis . We demonstrate that the three loci encoding known Fds are subject to distinct regulatory mechanisms and that specific Fds are utilized to shuttle electrons to separate respiratory and energy production complexes during different physiological states. The results obtained argue that unique physiological roles have been established for each Fd and that continued use of T. kodakarensis and related hydrogen-evolving species as bioengineering platforms must account for the distinct Fd partnerships that limit flux to desired electron acceptors. Extrapolating our results more broadly, the retention of multiple Fd isoforms in most species argues that specialized Fd partnerships are likely to influence electron flux throughout biology.
机译:在分解代谢过程中释放的高能电子可用于节能机制。最大的能量获取要求将这些有价值的电子准确地从电子供体传递到适当的电子受体。诸如铁氧还蛋白之类的蛋白质电子载体为利用特定的铁氧还蛋白伙伴关系提供了机会,以确保通向关键生理途径的电子通量与最大能量获取相一致。大多数物种编码许多铁氧还蛋白同工型,但对于个别铁氧还蛋白在大多数系统中的作用知之甚少。我们的研究结果详细说明,铁氧还蛋白同工型在体内会产生很大的独特而独特的蛋白质相互作用,并且通过一种铁氧还蛋白的通量通常无法通过通过另一铁氧还蛋白同工型的通量来回收。更广泛地获得的结果表明,铁氧还蛋白同工型在整个生物生命中并未进化为通用的电子穿梭体,而是充当了从选择电子供体到所需电子受体的有价值的低电势电子的选择性信使。摘要在自然和生物工程系统中,电子通量的控制对于最大化能量获取至关重要。小分子和蛋白质都通过分解代谢过程中的代谢分解过程中释放的高能,低电位电子。铁氧还蛋白(Fd)蛋白是一类丰富的含Fe-S的小蛋白,在许多物种中对于节能和ATP生产策略都是必不可少的。在复杂的新陈代谢中以及存在多个Fd蛋白的系统中,很难模拟电子流。活性的重叠和/或通过每个Fd的电子通量的限制会限制生理和代谢工程策略。在这里,我们建立了三种铁氧还蛋白在模型超嗜热菌柯达卡热球菌中的相互作用,反应性和生理作用。我们证明,编码已知Fds的三个基因座受不同的调节机制的约束,并且在不同的生理状态下利用特定的Fds来穿梭电子以分离呼吸和能量产生复合体。获得的结果表明,对于每种Fd都已确立了独特的生理作用,并且继续使用柯达卡氏衣藻和相关的产氢物种作为生物工程平台必须说明将Fd限制为所需电子受体的独特Fd伙伴关系。更广泛地推断我们的结果,大多数物种中多种Fd亚型的保留表明,专门的Fd伙伴关系可能会影响整个生物学的电子通量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号