...
首页> 外文期刊>Journal of bacteriology >Distinct Physiological Roles of the Three [NiFe]-Hydrogenase Orthologs in the Hyperthermophilic Archaeon Thermococcus kodakarensis
【24h】

Distinct Physiological Roles of the Three [NiFe]-Hydrogenase Orthologs in the Hyperthermophilic Archaeon Thermococcus kodakarensis

机译:三种[NiFe]-加氢酶直系同源基因在超嗜热古生热球菌中的独特生理作用

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2) and play a key role in the energy metabolism of microorganisms in anaerobic environments. The hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which assimilates organic carbon coupled with the reduction of elemental sulfur (S0) or H2 generation, harbors three gene operons encoding [NiFe]-hydrogenase orthologs, namely, Hyh, Mbh, and Mbx. In order to elucidate their functions in vivo, a gene disruption mutant for each [NiFe]-hydrogenase ortholog was constructed. The Hyh-deficient mutant (PHY1) grew well under both H2S- and H2-evolving conditions. H2S generation in PHY1 was equivalent to that of the host strain, and H2 generation was higher in PHY1, suggesting that Hyh functions in the direction of H2 uptake in T. kodakarensis under these conditions. Analyses of culture metabolites suggested that significant amounts of NADPH produced by Hyh are used for alanine production through glutamate dehydrogenase and alanine aminotransferase. On the other hand, the Mbh-deficient mutant (MHD1) showed no growth under H2-evolving conditions. This fact, as well as the impaired H2 generation activity in MHD1, indicated that Mbh is mainly responsible for H2 evolution. The copresence of Hyh and Mbh raised the possibility of intraspecies H2 transfer (i.e., H2 evolved by Mbh is reoxidized by Hyh) in this archaeon. In contrast, the Mbx-deficient mutant (MXD1) showed a decreased growth rate only under H2S-evolving conditions and exhibited a lower H2S generation activity, indicating the involvement of Mbx in the S0 reduction process. This study provides important genetic evidence for understanding the physiological roles of hydrogenase orthologs in the Thermococcales.
机译:氢酶催化分子氢(H 2 )的可逆氧化,并在厌氧环境中对微生物的能量代谢起关键作用。嗜热古细菌Thermococcus kodakarensis KOD1具有同化作用,可吸收有机碳并减少元素硫(S 0 )或H 2 的生成,其中包含三个编码[NiFe]-的基因操纵子氢化酶直系同源物,即Hyh,Mbh和Mbx。为了阐明它们在体内的功能,构建了每个[NiFe]-氢化酶直系同源物的基因破坏突变体。 Hyh缺陷型突变体(PHY1)在H 2 S-和H 2 进化条件下均生长良好。 PHY1中H 2 S的产生与宿主菌株相同,而PHY1中H 2 的产生较高,这表明Hyh在H 方向上起作用在这种条件下,柯达氏球菌对2 的吸收。培养物代谢产物的分析表明,Hyh产生的大量NADPH可通过谷氨酸脱氢酶和丙氨酸转氨酶用于丙氨酸的生产。另一方面,缺乏Mbh的突变体(MHD1)在H 2 进化条件下没有生长。这一事实,以及MHD1中受损的H 2 生成活动,表明Mbh主要负责H 2 的进化。 Hyh和Mbh的共存增加了该古细菌种内H 2 转移的可能性(即Mbh释放的H 2 被Hyh氧化)。相反,缺乏Mbx的突变体(MXD1)仅在H 2 S进化条件下显示出降低的生长速率,并具有较低的H 2 S生成活性,表明Mbx参与S 0 还原过程。这项研究提供重要的遗传证据,以了解加氢酶直系同源物在嗜热球菌中的生理作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号