首页> 外文期刊>Frontiers in Physiology >Network Analysis-Based Approach for Exploring the Potential Diagnostic Biomarkers of Acute Myocardial Infarction
【24h】

Network Analysis-Based Approach for Exploring the Potential Diagnostic Biomarkers of Acute Myocardial Infarction

机译:基于网络分析的急性心肌梗死潜在诊断生物标志物研究方法

获取原文

摘要

Acute myocardial infarction (AMI) is a severe cardiovascular disease that is a serious threat to human life. However, the specific diagnostic biomarkers have not been fully clarified and candidate regulatory targets for AMI have not been identified. In order to explore the potential diagnostic biomarkers and possible regulatory targets of AMI, we used a network analysis-based approach to analyze microarray expression profiling of peripheral blood in patients with AMI. The significant differentially-expressed genes (DEGs) were screened by Limma and constructed a gene function regulatory network (GO-Tree) to obtain the inherent affiliation of significant function terms. The pathway action network was constructed, and the signal transfer relationship between pathway terms was mined in order to investigate the impact of core pathway terms in AMI. Subsequently, constructed the transcription regulatory network of DEGs. Weighted gene co-expression network analysis (WGCNA) was employed to identify significantly altered gene modules and hub genes in two groups. Subsequently, the transcription regulation network of DEGs was constructed. We found that specific gene modules may provide a better insight into the potential diagnostic biomarkers of AMI. Our findings revealed and verified that NCF4, AQP9, NFIL3, DYSF, GZMA, TBX21, PRF1 and PTGDR genes by RT-qPCR. TBX21 and PRF1 may be potential candidates for diagnostic biomarker and possible regulatory targets in AMI.
机译:急性心肌梗塞(AMI)是一种严重的心血管疾病,对人类生命构成严重威胁。但是,具体的诊断生物标记物尚未完全阐明,并且尚未确定AMI的候选调控靶标。为了探索AMI的潜在诊断生物标记物和可能的调控靶标,我们使用了基于网络分析的方法来分析AMI患者外周血的微阵列表达谱。通过Limma筛选重要的差异表达基因(DEG),并构建了基因功能调控网络(GO-Tree),以获得重要功能术语的固有隶属关系。构建了通路作用网络,挖掘了通路项之间的信号传递关系,以研究核心通路项对AMI的影响。随后,构建了DEGs的转录调控网络。加权基因共表达网络分析(WGCNA)用于鉴定两组中显着改变的基因模块和中枢基因。随后,构建了DEGs的转录调控网络。我们发现特定的基因模块可能会提供对AMI的潜在诊断生物标志物的更好的了解。我们的发现揭示并通过RT-qPCR证实了NCF4,AQP9,NFIL3,DYSF,GZMA,TBX21,PRF1和PTGDR基因。 TBX21和PRF1可能是AMI诊断生物标志物和可能的调控靶标的潜在候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号