首页> 外文期刊>Gastrointestinal Cancer Research >Cancer Stem Cells, Endothelial Progenitors, and Mesenchymal Stem Cells: “Seed and Soil” Theory Revisited
【24h】

Cancer Stem Cells, Endothelial Progenitors, and Mesenchymal Stem Cells: “Seed and Soil” Theory Revisited

机译:癌症干细胞,内皮祖细胞和间充质干细胞:“种子和土壤”理论的重新审视

获取原文
           

摘要

Isolation of putative cancer stem cells (CSCs) in various tumors has generated much excitement among researchers who consider these cells the potential “culprits” behind resistance to conventional therapy. Both cancer and cardiovascular disease are believed to be stem cell disorders involving circulating endothelial progenitors (CEPs) and mesenchymal stem cells (MSCs). CD133 and CD44, markers of CSCs in many tumors, also enrich CEPs and MSCs, respectively. We propose an integrated tumorigenesis model that involves all three interdependent stem cell (CSC, CEP, MSC) compartments by revisiting the “seed and soil” model. Developing therapeutics that can effectively target CSCs and spare normal cardiovascular tissue will remain a challenge. Preliminary laboratory and clinical data on monitoring and targeting colon CSCs, using such a modeling system, are discussed. More than a century ago, Virchow and Paget indirectly implied the existence of cancer stem cells (CSCs) 1 and a CSC niche, 2 respectively. The term “cancer stem cells” was coined in the early 1980s, 3 but research in the field was hampered by the lack of specific markers, cell-sorting technology, and the extremely low frequency of CSCs. The first isolation of putative CSCs in acute myelogenous leukemia (AML) by Dick and colleagues in 1994 4 spurred a wave of discoveries of CSCs in acute lymphocytic leukemia (ALL), 5 , 6 chronic myelogenous leukemia (CML), 7 , 8 multiple myeloma, 9 and in cancers of the colon, 10 – 12 breast, 13 prostate, 14 – 16 brain, 17 , 18 head and neck, 19 retina, 20 lung, 21 , 22 pancreas, 23 melanoma, 24 , 25 kidney, 26 and liver. 27 , 28 Researchers postulated that CSCs might be the “culprits” capable of evading conventional therapy; thus, eradication of CSCs could lead to complete cure. 29 , 30 However, CSCs are quiescent or slow cycling, 31 , 32 they overexpress antiapoptotic proteins, 24 , 25 , 33 possess multidrug resistance proteins, 24 , 25 , 34 , 35 and are characteristically similar to normal stem cells, except that their ability to differentiate is impaired. 4 – 29 In 1997, Asahara et al first identified bone-marrow derived circulating endothelial progenitors (CEPs) vital in postnatal physiologic and pathologic angiogenesis. 36 In the same year, Yin et al discovered CD133, a member of the prominin family that identifies and enriches CEPs. 37 Two large prospective studies showed that decreased CEP levels independently predict increased cardiovascular death and correlate with all known cardiovascular risk factors. 38 , 39 Conversely, elevated CEP levels were found in patients with leukemia, 40 myeloma, 41 , 42 myelodysplastic syndrome, 43 cancers of the lung, 44 breast, 45 , 46 liver, 47 colon and rectum, 48 – 50 prostate, 49 kidney, 26 and in infantile hemangioma. 51 Furthermore, the presence of elevated levels of CEPs or CD133 mRNA is predictive of poor outcomes and death in certain tumors. 44 , 47 – 49 , 52 Circulating endothelial progenitors are known to form the premetastatic niche essential in the earliest step to tumor angiogenesis, 53 and it has been shown that targeting CEPs inhibits the development of macrometastases from micrometastases in mouse lung metastasis models. 54 Moreover, it has been demonstrated that bone marrow-derived stem cells can transdifferentiate into endothelial precursor cells with the potential to acquire mutations and contribute “cancerous” microvascular endothelial cells to tumor vessels. 55 In 1997, Zohar and others identified mesenchymal stem cells (MSCs) using CD44, a glycoprotein ligand that binds with hyaluronate and E-selectin. 56 , 57 Variant forms of CD44 are expressed in many human cancers and correlate with cancer outcomes in certain tumors. 58 – 67 Interestingly, CD133 and CD44 have both been used to isolate CSCs in many tumors. 4 – 25 The purpose of this review is t
机译:在各种肿瘤中分离出假定的癌症干细胞(CSC),在研究人员中引起了极大的兴奋,他们认为这些细胞是对传统疗法产生抗药性的潜在“罪魁祸首”。癌症和心血管疾病均被认为是涉及循环内皮祖细胞(CEP)和间充质干细胞(MSC)的干细胞疾病。 CD133和CD44是许多肿瘤中CSC的标志物,也分别丰富了CEP和MSC。通过提出“种子和土壤”模型,我们提出了一个涉及所有三个相互依赖的干细胞(CSC,CEP,MSC)区室的综合肿瘤发生模型。开发可以有效靶向CSCs和保留正常心血管组织的疗法仍将是一个挑战。讨论了使用这种建模系统监测和靶向结肠CSC的初步实验室和临床数据。一个多世纪以前,Virchow和Paget分别间接暗示了癌症干细胞(CSC) 1 和CSC生态位, 2 的存在。 “癌症干细胞”一词是在1980年代初创造的, 3 ,但是由于缺乏特异性标记,细胞分选技术以及CSC的频率极低,该领域的研究受到了阻碍。 Dick及其同事于1994年对 4 首次分离出急性髓性白血病(AML)中的假定CSC,刺激了一系列关于急性淋巴细胞白血病(ALL)的CSC发现, 5 6 慢性骨髓性白血病(CML), 7 8 多发性骨髓瘤, 9 和在结肠癌中, 10 12 乳房, 13 前列腺, 14 16 大脑, 17 18 头和脖子, 19 视网膜, 20 肺, 21 22 胰腺, 23 黑色素瘤, 24 25 肾脏, 26 和肝脏。 27 28 研究人员推测,CSC可能是逃避常规疗法的“罪魁祸首”。因此,根除CSC可能会导致完全治愈。 29 30 但是,CSC处于静态或缓慢循环, 31 < sup> 32 他们过表达抗凋亡蛋白 24 25 33 具有多药耐药蛋白, 24 25 34 35 ,其特征与正常干细胞相似,不同之处在于它们的分化能力受到损害。 4 29 1997年,Asahara等人首次发现了骨髓来源的循环内皮祖细胞(CEP),这些祖细胞对出生后的生理和病理性血管生成至关重要。 36 同年,Yin等人发现了CD133,这是一种可识别和丰富CEP的蛋白素家族成员。 37 两项大型前瞻性研究表明,降低CEP水平可以独立预测心血管死亡的增加,并与所有已知的心血管危险因素相关。 38 39 相反,白血病, 40 骨髓瘤, 41患者的CEP水平升高 42 骨髓增生异常综合症, 43 肺癌, 44 乳腺癌, 45 46 肝脏, 47 结肠和直肠, 48 50 前列腺, 49 肾脏, 26 和婴儿血管瘤。 51 此外,CEPs或CD133 mRNA水平升高可预示某些肿瘤的预后不良和死亡。 44 47 49 52 已知循环内皮祖细胞形成了在肿瘤血管生成的最早步骤中必不可少的转移前小生境, 53 并且已证明靶向CEPs抑制了小鼠微小转移引起的巨转移的发展。肺转移模型。 54 此外,已证明骨髓来源的干细胞可以分化为内皮前体细胞,并具有获得突变的潜力,并向肿瘤血管贡献“癌性”微血管内皮细胞。 55 1997年,Zohar等人使用CD44(一种与透明质酸和E-选择素结合的糖蛋白配体)鉴定了间充质干细胞(MSC)。 56 57 CD44的变异形式在许多人类癌症中表达,并与某些肿瘤的癌症结果相关。 58 67 有趣的是,CD133和CD44都已被用于分离许多肿瘤中的CSC。 4 25 这篇评论的目的是

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号