首页> 外文期刊>EURASIP journal on advances in signal processing >Multi-camera object tracking using surprisal observations in visual sensor networks
【24h】

Multi-camera object tracking using surprisal observations in visual sensor networks

机译:使用视觉传感器网络中的意外观察进行多摄像机目标跟踪

获取原文

摘要

In this work, we propose a multi-camera object tracking method with surprisal observations based on the cubature information filter in visual sensor networks. In multi-camera object tracking approaches, multiple cameras observe an object and exchange the object’s local information with each other to compute the global state of the object. The information exchange among the cameras suffers from certain bandwidth and energy constraints. Thus, allowing only a desired number of cameras with the most informative observations to participate in the information exchange is an efficient way to meet the stringent requirements of bandwidth and energy. In this paper, the concept of surprisal is used to calculate the amount of information associated with the observations of each camera. Furthermore, a surprisal selection mechanism is proposed to facilitate the cameras to take independent decision on whether their observations are informative or not. If the observations are informative, the cameras calculate the local information vector and matrix based on the cubature information filter and transmit them to the fusion center. These cameras are called as surprisal cameras. The fusion center computes the global state of the object by fusing the local information from the surprisal cameras. Moreover, the proposed scheme also ensures that on average, only a desired number of cameras participate in the information exchange. The proposed method shows a significant improvement in tracking accuracy over the multi-camera object tracking with randomly selected or fixed cameras for the same number of average transmissions to the fusion center.
机译:在这项工作中,我们提出了一种基于视觉传感器网络中的孵化信息过滤器的,具有惊喜观测结果的多摄像机目标跟踪方法。在多摄像机对象跟踪方法中,多台摄像机观察一个对象并相互交换该对象的本地信息以计算该对象的全局状态。摄像机之间的信息交换受到某些带宽和能量的限制。因此,仅允许期望数量的具有最丰富信息的摄像机参与信息交换是满足带宽和能量的严格要求的有效方法。在本文中,惊喜的概念用于计算与每个摄像机的观测值相关的信息量。此外,提出了一个意外选择机制,以方便摄像机对自己的观察是否具有参考价值做出独立决策。如果观察到的信息有用,则摄像机会根据孵化器信息过滤器计算局部信息矢量和矩阵,并将它们传输到融合中心。这些相机称为意外相机。融合中心通过融合来自意外摄像机的局部信息来计算对象的全局状态。此外,所提出的方案还确保平均而言,仅期望数量的摄像机参与信息交换。所提出的方法显示出与使用随机选择或固定的摄像机进行多摄像机目标跟踪相比,对于相同数量的到融合中心的平均传输,跟踪精度有了显着提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号