首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Coordinating Distributed Algorithms for Feature Extraction Offloading in Multi-Camera Visual Sensor Networks
【24h】

Coordinating Distributed Algorithms for Feature Extraction Offloading in Multi-Camera Visual Sensor Networks

机译:多相机视觉传感器网络中用于特征提取卸载的协调分布式算法

获取原文
获取原文并翻译 | 示例

摘要

Real-time visual analysis tasks, like tracking and recognition, require swift execution of computationally intensive algorithms. Visual sensor networks could be enabled to perform such tasks by allowing the camera nodes to offload their computational load to nearby processing nodes. In this paper, we address the problem of minimizing the completion time of multiple camera sensors that share the transmission and the processing resources of multiple processing nodes for computation offloading. We show that the problem is NP-hard, and propose a combination of central coordination and distributed optimization with limited signaling among the camera sensors as a solution. We analyze the existence of equilibrium allocations for the distributed algorithms, evaluate the effect of the network topology and of the video characteristics on the algorithms' performance, and assess the benefits of central coordination. Our results demonstrate that with sufficient information available, distributed optimization can provide low completion times, moreover predictable and stable performance can be achieved with additional, sparse central coordination.
机译:实时视觉分析任务(例如跟踪和识别)需要快速执行计算密集型算法。通过允许摄像机节点将其计算负荷转移到附近的处理节点,可以使视觉传感器网络执行此类任务。在本文中,我们解决了最小化共享共享多个处理节点的传输和处理资源以进行计算分流的多个摄像头传感器的完成时间的问题。我们证明了该问题是NP难题,并提出了将中央协调和分布式优化相结合并在相机传感器之间进行有限信令的解决方案。我们分析了分布式算法平衡分配的存在,评估了网络拓扑和视频特性对算法性能的影响,并评估了中央协调的好处。我们的结果表明,有了足够的可用信息,分布式优化就可以缩短完成时间,此外,通过额外的,稀疏的中央协调,可以实现可预测的稳定性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号