首页> 外文期刊>Entropy >From f-Divergence to Quantum Quasi-Entropies and Their Use
【24h】

From f-Divergence to Quantum Quasi-Entropies and Their Use

机译:从f-散度到量子拟熵及其应用

获取原文

摘要

Csiszár’s f-divergence of two probability distributions was extended to the quantum case by the author in 1985. In the quantum setting, positive semidefinite matrices are in the place of probability distributions and the quantum generalization is called quasi-entropy, which is related to some other important concepts as covariance, quadratic costs, Fisher information, Cramér-Rao inequality and uncertainty relation. It is remarkable that in the quantum case theoretically there are several Fisher information and variances. Fisher information are obtained as the Hessian of a quasi-entropy. A conjecture about the scalar curvature of a Fisher information geometry is explained. The described subjects are overviewed in details in the matrix setting. The von Neumann algebra approach is also discussed for uncertainty relation.
机译:1985年,作者将Csiszár的两个概率分布的f-散度扩展到了量子情况。在量子环境中,正半定矩阵代替了概率分布,量子概化被称为拟熵,它与某些其他重要概念,如协方差,二次成本,Fisher信息,Cramér-Rao不等式和不确定性关系。值得注意的是,在量子情况下,理论上存在多个Fisher信息和方差。获得Fisher信息作为准熵的Hessian。解释了有关Fisher信息几何的标量曲率的猜想。矩阵设置中详细概述了所描述的主题。还讨论了冯·诺依曼代数方法的不确定性关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号