首页> 外文期刊>eLife journal >Analysis of cellular behavior and cytoskeletal dynamics reveal a constriction mechanism driving optic cup morphogenesis
【24h】

Analysis of cellular behavior and cytoskeletal dynamics reveal a constriction mechanism driving optic cup morphogenesis

机译:细胞行为和细胞骨架动力学的分析揭示了收缩杯驱动视杯形态发生的机制。

获取原文
           

摘要

Tissues and organs form into their final shapes because the cells in a developing embryo generate forces that alter their shape and position. Networks of fibres made from actin and myosin proteins generate these forces, and because the fibres can assemble in many different ways inside cells, they allow the cells to move and change shape in many different ways. Forces in some tissues can cause flat sheets of cells to bend. These sheets of cells are attached on one side (their “basal” surface) to a collection of membranes and molecules that are known as the extracellular matrix. When the cells in the sheet progressively shrink at their basal surface, causing the sheet to bend towards the extracellular matrix, this is known as basal constriction. Nicolás-Pérez et al. have used high-resolution imaging to record how basal constriction helps the optic cup – the main chamber of the eye – to form in zebrafish embryos. This imaging confirmed that a sheet of precursor cells progressively bends towards its basal surface to form the curved shape of the eyeball. Further analysis revealed that this basal constriction happens when myosin fibres accumulate in clusters along the basal surface of some of the precursor cells. The resulting contraction of the basal surface of the cells relies both on the tension generated by myosin inside the cell and on the cells being attached properly to the extracellular matrix. Using a laser beam, Nicolás-Pérez et al. also destroyed small parts of the basal surface of the retina. This procedure allows the mechanical tension distribution throughout the developing eye to be mapped. Laser ablations revealed a narrow time window during development when destroying small parts of the basal surface can cause the entire sheet of cells to relax, preventing it from curving to form the shape of the eye. Sheets of precursor cells are important building blocks of the nervous system, yet researchers only have limited knowledge of the processes that enable them to fold or bend into a final shape. As such, the findings of Nicolás-Pérez et al. will contribute to a wider understanding of how cells and tissues behave while the brain is forming.
机译:组织和器官形成其最终形状,因为发育中的胚胎中的细胞产生改变其形状和位置的力。由肌动蛋白和肌球蛋白组成的纤维网络会产生这些作用力,并且由于纤维可以在细胞内部以多种不同方式组装,因此它们可以使细胞以多种不同方式移动和改变形状。某些组织中的力会导致平板细胞弯曲。这些细胞片在一侧(它们的“基础”表面)附着在一组膜和分子上,这些膜和分子被称为细胞外基质。当薄片中的细胞在其基底表面逐渐收缩,导致薄片向细胞外基质弯曲时,这被称为基底收缩。 Nicolás-Pérez等。已经使用高分辨率成像记录了基础收缩如何帮助视杯-眼睛的主腔-在斑马鱼胚胎中形成。该成像证实,一片前体细胞逐渐向其基底表面弯曲以形成眼球的弯曲形状。进一步的分析表明,当肌球蛋白纤维沿某些前体细胞的基底表面成簇聚集时,就会发生这种基底收缩。细胞基表面的最终收缩不仅依赖于肌球蛋白在细胞内部产生的张力,还依赖于细胞正确附着于细胞外基质的过程。 Nicolás-Pérez等人使用激光束。还破坏了视网膜基底表面的一小部分。此过程可以绘制出整个显影眼中的机械张力分布图。激光消融揭示了在显影过程中狭窄的时间窗口,当破坏基底表面的一小部分会导致整个细胞片松弛,从而阻止其弯曲形成眼睛的形状。前体细胞的薄片是神经系统的重要组成部分,但是研究人员对使它们折叠或弯曲成最终形状的过程了解甚少。因此,Nicolás-Pérez等人的发现。将有助于更广泛地了解大脑形成过程中细胞和组织的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号