首页> 外文期刊>Electronic Journal of Information Technology in Construction >Using particle swarm optimization to predict cost contingency on transportation construction projects
【24h】

Using particle swarm optimization to predict cost contingency on transportation construction projects

机译:使用粒子群优化方法预测交通建设项目的费用意外

获取原文

摘要

Cost Contingency is a financially important amount added to the base estimate for covering unforeseen uncertainties and risks in construction projects, including construction difficulties, design changes during construction, and inaccuracies in the estimating process. An accurate cost contingency is critical to construction project participants having a significant impact on project financial successes and other organizational activities. This study proposes a new approach to predicting the owner’s cost contingency on transportation construction projects using particle swarm optimization (PSO), a population-based stochastic optimization technique inspired by the social behavior of flocking birds or schooling fish. Through a comparison of performance with an artificial neural network (ANN) based approach using historical data from Florida Department of Transportation (FDOT) construction projects, the findings indicated PSO more accurately predicts the owner’s cost contingency.
机译:成本应急费用是基础估计中增加的财务上重要的金额,用于涵盖建设项目中不可预见的不确定性和风险,包括施工困难,施工期间的设计变更以及估算过程中的不准确性。准确的成本意外费用对于建设项目参与者对项目财务成功和其他组织活动具有重大影响至关重要。这项研究提出了一种新方法,该方法可以使用粒子群优化(PSO)来预测所有者在交通建设项目上的成本偶然性,粒子群优化是一种基于种群的随机优化技术,受植群鸟或学鱼的社会行为的启发。通过使用佛罗里达交通局(FDOT)建设项目的历史数据,通过与基于人工神经网络(ANN)的方法进行性能比较,结果表明PSO可以更准确地预测所有者的费用意外情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号